17-71. If the support at B is suddenly removed, determine the initial downward acceleration of point C. Segments AC and CB each has a weight of 10 N (= 1 kg).

\[I = \frac{1}{3} \left(\frac{10}{9.81} \right) (3)^2 + \frac{1}{2} \left(\frac{10}{9.81} \right) (3)^2 + \frac{10}{9.81} (1.5)^2 + 3^3 \]

\[= 15.291 \text{ kg} \cdot \text{m}^2 \]

\[\sum M_A = I \alpha; \quad 10(3) + 10(1.5) = 15.291 \alpha \]

\[\alpha = \frac{15.291 \times 3}{10} = 4.58 \text{ m/s}^2 \]

Ans

*17-72. Determine the angular acceleration of the 25-kg diving board and the horizontal and vertical components of reaction at the pin A the instant the man jumps off. Assume that the board is uniform and rigid, and that at the instant he jumps off the spring is compressed a maximum amount of 200 mm, \(\phi = 0 \), and the board is horizontal. Take \(k = 7 \text{ kN/m} \).

\[\sum M_A = I \alpha; \quad 1.5(1400 - 245.25) = \left(\frac{25(0.3)^2}{2} \right) \alpha \]

\[\alpha = \frac{1400 - 245.25 - A_v}{25(1.50)} \]

\[A_x = \text{Ans} \]

\[A_y = 245.25 \text{ N} \]

\[= 0 \]

\[\text{Ans} \]

\[A_y = 289 \text{ N} \]

\[\alpha = 23.1 \text{ m/s}^2 \]

\[\text{Ans} \]
17-73. The disk has a mass of 20 kg and is originally spinning at the end of the strut with an angular velocity of \(\omega = 60 \text{ rad/s} \). If it is then placed against the wall, for which the coefficient of kinetic friction is \(\mu_k = 0.3 \), determine the time required for the motion to stop. What is the force in strut BC during this time?

\[
\begin{align*}
\sum \mathbf{F}_r &= m\omega(\omega) \\
F_x \sin 30^\circ - N_x &= 0 \\
n^2 \mathbf{F}_x &= m\omega(\omega) \\
F_x \cos 30^\circ - 209.83 &= 0.25N_x = 0 \\
2M \omega = I\alpha \\
0.3\nu(0.15) &= \left[\frac{1}{2} \left(\frac{20(0.15)^2}{2} \right) \right] \alpha \\
N_x &= 96.6 \text{ N} \\
F_x &= 193 \text{ N} \quad \text{Ans} \\
\alpha &= 19.3 \text{ rad/s}^2 \quad \text{Ans} \\
\omega &= \omega_0 + \alpha t \\
0 &= 60 + (-19.3)t \\
t &= 3.11 \text{ s} \quad \text{Ans}
\end{align*}
\]

17-74. The disk has a mass \(M \) and a radius \(R \). If a block of mass \(m \) is attached to the cord, determine the angular acceleration of the disk when the block is released from rest. Also, what is the velocity of the block after it falls a distance \(2R \) starting from rest?

\[
\begin{align*}
\sum \mathbf{F}_r &= 2I\omega\omega \\
m\bar{g}R &= \frac{1}{2}m(2R)^2 + m\omega^2R \\
\alpha &= \frac{2mgR}{2mR(M + 2m)} \quad \text{Ans} \\
\omega &= \omega_0 + \alpha t \\
v^2 &= v_0^2 + 2\alpha \left(v - v_0 \right) \\
v^2 &= 0 + 2 \left(\frac{2mgR}{R(M + 2m)} \right) \left(2R - 0 \right) \\
v &= \frac{2mgR}{(M + 2m)} \quad \text{Ans}
\end{align*}
\]

17-75. The two blocks \(A \) and \(B \) have a mass \(m_a \) and \(m_b \), respectively, where \(m_a > m_b \). If the pulley can be treated as a disk of mass \(M \), determine the acceleration of block \(A \). Neglect the mass of the cord and any slipping on the pulley.

\[
\begin{align*}
\sum \mathbf{F}_r &= 2I\omega\omega \\
m_a\bar{g}R = m_a\omega^2R = \left(\frac{1}{2}M \right) \alpha + m_a\omega^2R = m_a\omega^2R \\
\alpha &= \frac{\left[m_a\omega_0^2R - m_b \right]}{\left(\frac{1}{2}M + m_a + m_b \right)} \\
\alpha &= \frac{\left[m_a\omega_0^2R - m_b \right]}{\left(\frac{1}{2}M + m_a + m_b \right)} \quad \text{Ans}
\end{align*}
\]

455
17.105. The uniform bar of mass \(m \) and length \(L \) is balanced in the vertical position when the horizontal force \(P \) is applied to the roller at \(A \). Determine the bar’s initial angular acceleration and the acceleration of its top point \(B \).

\[P = \frac{ma_\theta}{L} \]

\[P\left(\frac{L}{2}\right) = \left(\frac{1}{12}ml^2\right)a \]

\[a = \frac{6P}{ml} \]

\[a_\theta = \frac{P}{m} \frac{L}{2} \]

\[a_B = \frac{2P}{mL} \]

\[a_\theta = \frac{P}{m} \frac{L}{2} \frac{1}{\left(\frac{6P}{ml}\right)} \]

\[a_B = \frac{2P}{mL} \]
17.106. The ladder has a weight W and rests against the smooth wall and ground. Determine its angular acceleration as a function of θ when it is released and allowed to slide downward. For the calculation, treat the ladder as a slender rod.

Equation of Motion: The mass moment of inertia of the ladder about its mass center is given by
$$I_c = \frac{1}{12}mL^2 = \frac{1}{12} \left(\frac{W}{g} \right) L^2.$$ Applying Eq. 17.16, we have

$$\dot{X} = X_0 \ddot{a_0}, \quad N_B(- \dot{L} \sin \theta) - W \left(\frac{1}{2} \dot{L} \cos \theta \right) = - \left(\frac{W}{g} \right) \dot{L} \cos \theta,$$

$$+ \left(\frac{W}{g} \right) \dot{a_0} \left(\frac{1}{2} \dot{L} \cos \theta \right)$$

$$- \left(\frac{W}{g} \right) \frac{1}{2} \dot{L} \sin \theta$$

$$\Delta \times \dot{a_0} = m \ddot{a_0}$$

$$N_B = \left(\frac{W}{g} \right) \dot{a_0}.$$ \[1\]

Kinematic: At the instant the ladder being released, the angular velocity of the ladder, $\omega = 0$. Analyzing the motion of points A and B by applying Eq. 16-18 with $v_{A0} = (\cos \theta \dot{L} - \dot{Y} \sin \theta)$, we have

$$\dot{a_0} = \dot{a_0} + \dot{\alpha} \times r_{A0} - \omega \times r_{A0}$$

$$-\dot{\alpha} = -\omega \times \dot{a_0} + (\cdot \omega \times r_{A0}) \times (\cos \theta \dot{L} - \dot{Y} \sin \theta)$$

$$-\dot{\alpha} = (-\dot{L} \sin \theta) \dot{a_0} + ((\dot{L} \cos \theta) \dot{a_0} - \dot{a_0})$$

Equating \dot{a}_0 component, we have

$$0 = (\dot{L} \cos \theta) \dot{a_0} - \dot{a_0}$$

$$a_0 = (\dot{L} \cos \theta) \dot{a_0}$$

Analyzing the motion of points A and G by applying Eq. 16-18 with $v_{A0} = (\frac{1}{2} \cos \theta \dot{L} - \dot{Y} \sin \theta)$, we have

$$\dot{a_0} = \dot{a_0} + \dot{\alpha} \times r_{A0} - \omega \times r_{A0}$$

$$\dot{a_0} + \dot{\alpha} \times (\dot{a_0}) = (\dot{L} \cos \theta) \dot{a_0} + (\cdot \omega \times r_{A0}) \times (\frac{1}{2} \cos \theta \dot{L} - \dot{Y} \sin \theta)$$

Substituting the results obtained above into Eqs. [1] and [2] and solving yields

$$N_B = \frac{3W}{g} \sin \theta$$

$$\alpha = \frac{3W}{g} \cos \theta$$

Ans.
17-113. The 5-kN (=500-kg) beam is supported at A and B when it is subjected to a force of 10 kN as shown. If the pin support at A suddenly fails, determine the beam’s initial angular acceleration and the force of the roller support on the beam. For the calculation, assume that the beam is a slender rod so that its thickness can be neglected.

\[\sum \mathbf{F}_x = m(\alpha \mathbf{i}) \]
\[= 10 \times 0.5 - \frac{5000}{9.81} = 5000 \times 9.81 \]

\[\sum \mathbf{M}_A = \sum (\mathbf{M}_{Ac}) \]
\[= 5000(3) + 10 \times 0.5 - \frac{5000}{9.81} = 5000 \times 9.81 \]

\[\alpha = \frac{15000}{9.81 \times 10^3} \]

\[\alpha = 7.13 \text{ rad/s}^2 \quad \text{Ans} \]

\(R_B = 97.86 \text{ N} \quad \text{Ans} \)

(+) if \(\theta_A \), \(\theta_B \) is negative.

\[\theta_A < 0 \] means that the beam stays in contact with roller support.