

TOBB UNIVERSITY OF ECONOMICS AND TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT

DESIGN, ANALYSIS, MANUFACTURING AND TEST OF A VERTICAL AXIS WIND TURBINE (VAWT)

Arslan Ömür ÖZCAN **Dinc BULGURLU**

Supervisors: Assoc. Prof. M. Ali GÜLER Asst. Prof. Nilay Sezer UZOL

Abstract

The main goal of the project is to design a 1/4 scale 3-bladed H-Type Vertical Axis Wind Turbine (VAWT) that can generate 1000 Watt of power. In the design process; the aerodynamic analysis, structural analysis and modal analysis are done. After designing the VAWT, a prototype is manufactured and tested.

Aerodynamic Design

aerodynamic design the For based calculations, momentum multistream tube model is used.

Design Inputs

Power	: 1000 watt
Diameter	: 60 cm
TSR	: 4.5
Solidity	: 0.225
Wind Speed	: 10 m/s
No. of blades	: 3
Design Outputs	
Airfoil	: NACA0018
Height	: 35 cm

Zoomed view of used mesh

CFD Analysis

2-D CFD analysis are performed to predict the output power and aerodynamic forces over the blades. Sliding mesh tecnique is used in transient calculations with 0.0001s and 0.0002s time steps. Mesh involves 500.000 nodes. These analysis are performed for NACA0018 and FX 63-137 airfoils with different wind speeds.

Vorticity contours at 10 m/s wind speed

Transient calculations are kept running until the solution is converged.

Cp-Time graph with 0.0001s time step

İlker VURUŞKAN

Total Deformation of VAWT

Structural analysis results		
Max. Principal Stress	200 Mpa	
Max. Shear Stress	25 Mpa	
Max. Equivalent (Von-Misses) Stress	151 Mpa	
Max. Total Deformation	0,22 mm	

Mode 1			
Natural	Vibration	Direction	
Frequency	Туре	Direction	
54,193	Bending	around axis x	
54,439	Bending	around axis y	
98,983	Torsional	around axis z	
245,62	Bending	around axis x and y	
245.79	Bending	around axis x and y	
291.33	Bending	around axis x and y	
	Natural Frequency 54,193 54,439 98,983 245,62 245.79 291.33	Mode 1NaturalVibrationFrequencyType54,193Bending54,439Bending98,983Torsional245,62Bending245.79Bending291.33Bending	

Mode Frequencies and Mode Types

• 0.0001s and 0.0002s time steps are tried. According to the results 0.0001s time step is

unnecessarily small and causes waste of time. • Aerodynamic forces over the airfoil blades are calculated and plotted. This force is used as input to the structural analysis of the turbine blades.

• All these analysis performed for NACA0018 and FX 63-137 airfoils with different wind speeds.

• In structural part, the aerodynamic force is used an input. However, as determined the as centrifugal forces dominate the aerodynamic forces.

 Maximum total deformation occurs on the blades. In order to prevent or minimize this deformation, blades produced by carbon fiber material.

• With modal analysis, the natural frequency of the system is calculated and kept away from the rotating frequency to prevent collusion.

Conclusions

• 2-D CFD analysis of the designing VAWT is performed to calculate the power and force values. Sliding mesh tecnique is used.

• A ¹/₄ scale prototype is manufactured

Wind Tunnel Test of the scaled model is done.

Picture of the manufactured VAWT