Δ

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MAK 501 ENGINEERING MATHEMATICS

FALL 2016

Due Date: 14.12.2016- Wednesday* (18:30) HOMEWORK 6

1. The reciprocity relations some entries from transform tables are:

$$
\begin{array}{r}
F\{\hat{f}(x)\}=2 \pi f(-\omega) \\
F^{-1}\{f(-\omega)\}=\frac{\hat{f}(x)}{2 \pi} \\
e^{-a|x|}(a>0) \Rightarrow \frac{2 a}{\omega^{2}+a^{2}} \\
H(x+a)-H(x-a) \Rightarrow \frac{2 \sin \omega a}{\omega} \\
H(-x) e^{a x}(R e a>0) \Rightarrow \frac{1}{a-i \omega} \tag{5}
\end{array}
$$

a Derive the relations 1 and 2 .
b To illustrate, use 1 and 3 to show that

$$
F\left\{\frac{2 a}{x^{2}+a^{2}}\right\}=2 \pi e^{-a|\omega|},(a>0)
$$

or equivalently,

$$
F\left\{\frac{1}{x^{2}+a^{2}}\right\}=\frac{\pi}{a} e^{-a|\omega|},(a>0)
$$

c Use 1 and 4 to show that

$$
F\left\{\frac{\sin a x}{x}\right\}=\pi[H(\omega+a)-H(\omega-a)],(a>0)
$$

d Use 1 and 5 to show that

$$
F\left\{\frac{1}{a-i x}\right\}=2 \pi H(\omega) e^{-a \omega},(\operatorname{Re}(a)>0)
$$

2. PDE of a rad which is translating rightward with constant speed v is $\alpha^{2} u_{x x}=u_{t}+V u_{x}$, where $V=v / c$ and c is the specific heat of the material. Use the Fourier transform to solve the problem.

$$
\begin{gathered}
\alpha^{2} u_{x x}=u_{t}+V u_{x}, \quad(-\infty<x<\infty, 0<t<\infty) \\
u(x, 0)=f(x), \quad(-\infty<x<\infty)
\end{gathered}
$$

where $u \rightarrow 0$ and $u_{x} \rightarrow 0$ as $x \rightarrow \pm \infty$.
3. Consider the boundary-value problem

$$
\begin{array}{r}
u^{\prime \prime}-9 u=50 e^{-2 x}, \quad(0<x<\infty) \\
u(0)=u_{0}, \quad u(\infty)-\text { bounded } \tag{7}
\end{array}
$$

Solve using Laplace transform. (HINT: When you take the transform of $u^{\prime \prime}$ you will be faced with a $u^{\prime}(0)$ term, which is not prescribed in 7 . Thus, call that quantity C, say, and evaluate it by imposing on your solution the condition that $u(\infty)$ be bounded, at the end.)!YOU DO NOT HAVE TO FOLLOW THE HINT!
4. Solve the following ordinary differential equation using Laplace transform.

$$
\begin{gathered}
y^{\prime \prime}+5 y^{\prime}-6 y=\left\{\begin{array}{cc}
0 & 0<t<3 \\
e^{t} & t>3
\end{array}\right. \\
y(0)=3, \quad y^{\prime}(0)=7
\end{gathered}
$$

Due date is Monday 12 th of December. For each day delay 15 points will be reduced.

> Technology Center, Za06(ETU HYDRO): Kasım Enes KALIN

