TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ
 MAK 501 ENGINEERING MATHEMATICS

FALL 2016

HOMEWORK 5

Due 24 Nov 2016
1.

Solve Laplace Equation inside a circular cylinder subject to the boundary conditions,

$$
u(r, \theta, 0)=\alpha(r) \sin 7 \theta, u(r, \theta, H)=0, u(a, \theta, z)=0
$$

2.

Solve the heat equation,

$$
\frac{\partial u}{\partial t}=k \nabla^{2} u
$$

inside a quarter circular cylinder ($0<\theta<\frac{\pi}{2}$ with radius a and height H) subject to the initial condition

$$
u(r, \theta, z, 0)=f(r, \theta, z)
$$

Briefly explain what temperature distribution you expect to be approached as t goes to infinity. Consider the following boundary conditions,

$$
\frac{\partial u}{\partial z}(r, \theta, 0)=0, \quad \frac{\partial u}{\partial z}(r, \theta, H)=0, \quad \frac{\partial u}{\partial \theta}(r, 0, z)=0, \quad \frac{\partial u}{\partial \theta}(r, \pi / 2, z)=0, \quad \frac{\partial u}{\partial r}(a, \theta, z)=0
$$

3.

Use the method of eigenfunction expansions to solve the given problem in the unit disk,

$$
\nabla^{2} u=2+r^{3} \cos 3 \theta, u(1, \theta)=0
$$

4.

a)
you are asked to use the eigenfunction expansions method to solve the nonhomogeneous heat boundary value problem, with time-dependent heat source,

$$
\begin{gathered}
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right)+q(r, \theta, t), \\
u(a, \theta, t)=0, \\
u(r, \theta, 0)=f(r, \theta),
\end{gathered}
$$

where $0<r<a, 0<\theta<2 \pi$, and $t>0$. Justify the following steps.
(a) Let

$$
\begin{gathered}
u(r, \theta, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(A_{m n}(t) \cos m \theta+B_{m n}(t) \sin m \theta\right), \\
f(r, \theta)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n} \cos m \theta+b_{m n} \sin m \theta\right) \\
q(r, \theta, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(c_{m n}(t) \cos m \theta+d_{m n}(t) \sin m \theta\right)
\end{gathered}
$$

(Why should this be your starting point?) What are $a_{m n}, b_{m n}, c_{m n}(t)$, and $d_{m n}(t)$, in terms of f and q ?
(b) Show that $A_{m n}$ and $B_{m n}$ are solutions of the following initial value problems:

$$
\begin{array}{ll}
A_{m n}^{\prime}(t)+\lambda_{m n}^{2} A_{m n}(t)=c_{m n}(t), & A_{m n}(0)=a_{m n} \\
B_{m n}^{\prime}(t)+\lambda_{m n}^{2} B_{m n}(t)=d_{m n}(t), & B_{m n}(0)=b_{m n}
\end{array}
$$

(c) Complete the solution by showing that

$$
A_{m n}(t)=e^{-\lambda_{m n}^{2} t}\left(a_{m n}+\int_{0}^{t} e^{\lambda_{m n}^{2} s} c_{m n}(s) d s\right)
$$

and

$$
B_{m n}(t)=e^{-\lambda_{m n}^{2} t}\left(b_{m n}+\int_{0}^{t} e^{\lambda_{m n}^{2} s} d_{m n}(s) d s\right)
$$

when $c=1, f=1$, and $q(r, \theta, t)=e^{-t}$
b)

Plot the temperature of the center and describe what happens as $t \rightarrow \infty$.

