TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MAK 501 ENGINEERING MATHEMATICS

FALL 2016

Due Date: 11/11/2016

HOMEWORK 4

1. Consider a slightly damped vibrating string that satisfies,

$$
\rho_{0} \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}-\beta \frac{\partial u}{\partial t}
$$

a) Briefly explain why $\beta>0$
b) Determine the solution (by seperation of variables) that satisfies the boundary conditions,

$$
\begin{aligned}
& u(0, t)=0 \\
& u(L, t)=0
\end{aligned}
$$

and the initial conditions,

$$
\begin{aligned}
& u(x, 0)=f(x) \\
& \frac{\partial u}{\partial t}(x, 0)=g(x)
\end{aligned}
$$

You can assume that this fractional coefficient β is relatively small. $\quad\left(\beta^{2}<4 \pi^{2} \rho_{0} T_{0} / L^{2}\right)$
2. Slove Laplace's equation inside a rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary conditions,

$$
u(0, y)=0, u(L, y)=0, u(x, 0)-\frac{\partial u}{\partial y}(x, 0)=0, u(x, H)=f(x)
$$

3. Slove Laplace's equation inside a 90° sector of a circular annulus ($a<r<b, 0<\theta<\frac{\pi}{2}$) subject to the boundary conditions,
a) $u(r, 0)=0, u(r, \pi / 2)=0, u(a, \theta)=0, u(b, \theta)=f(\theta)$
b) $\quad u(r, 0)=0, u(r, \pi / 2)=f(r), u(a, \theta)=0, u(b, \theta)=0$
4. Solve the heat equation,

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

$$
0<x<L, t>0
$$

which subject to,

$$
\begin{aligned}
& \frac{\partial u}{\partial x}(0, t)=0, t>0 \\
& \frac{\partial u}{\partial x}(L, t)=0, t>0
\end{aligned}
$$

and the initial condition,

$$
u(x, 0)=6+4 \cos \frac{3 \pi x}{L}
$$

5. Solve the Poisson's equation,

$$
\nabla^{2} u=e^{2 y} \sin x
$$

subject to the following boundary conditions,

$$
u(0, y)=0 u(x, 0)=0 u(\pi, y)=0 u(x, L)=f(x)
$$

