TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ
 MAK 501 ENGINEERING MATHEMATICS

FALL 2016

Due Date:21.10.2016- Friday* (08:30)
 HOMEWORK 3

1. Solve below problems using separation of variables. Take the separation constant to be $-\lambda^{2}$. Express your result by superposing X an T. If the PDE cannot be separated, state that. (If the last digit of your ID number is odd, solve a and c ; if even, solve b and d)
a. $u_{x x}=u_{t}+3 u$
b. $u_{x x}+2 u_{x}=u_{t}$ HINT: In this case you should find that the value of K that needs to be distinguished [as we distinguished the case $\mathrm{K}=0$ in (9) and (10)] is $\mathrm{K}=1$, not $\mathrm{K}=0$.
c. $u_{x x}+2 u_{x t}=u_{t}$
d. $u_{x x}+2 u_{x t}=u_{t t}$
2. Can we use superposition to conclude from

$$
X=A \cos \lambda X+B \sin \lambda X+D+E x
$$

and

$$
T=F \exp \left(-\lambda^{2} \alpha^{2} t\right)+G
$$

that

$$
u(x, t)=[A \cos \lambda X+B \sin (\lambda x)+D+E x]\left[F \exp \left(-\lambda^{2} \alpha^{2} t\right)+G\right]
$$

Explain.
3. The temperature distribution $\mathrm{u}(\mathrm{x}, \mathrm{t})$ in a $2-\mathrm{m}$ long brass rod is governed by the problem

$$
\begin{gathered}
\alpha^{2} u_{x x}=u_{t},(0<x<2,0<t<\infty) \\
u(0, t)=u(2, t)=0,(t>0) \\
u(x, 0)=\left\{\begin{array}{cc}
50 x, & (0<x<1) \\
100-5 x, & (1<x<2)
\end{array}\right.
\end{gathered}
$$

where $\alpha^{2}=2.9 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$
a. Determine the solution for $u(x, t)$
b. Compute the temperature at the midpoint of the rod at the end of 1 hour.
c. Compute the time it will take for the temperature at that point to diminish to $5^{\circ} \mathrm{C}$.
d. Compute the time it will take for the temperature at that point to diminish to $1^{\circ} \mathrm{C}$. 4. Constant forcing function, the governing PDE is

$$
\begin{equation*}
c^{2} y_{x x}=y_{t t}+g \tag{1}
\end{equation*}
$$

Solve PDE subject to conditions

$$
\begin{gathered}
y(0, t)=0, y(L, t)=0 \\
y(x, 0)=f(x), y_{t}(x, 0)=0
\end{gathered}
$$

leaving expansion coefficients in integral form. HINT: The form $\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{X}(\mathrm{x}) \mathrm{T}(\mathrm{t})$ gives

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}+\frac{g}{c^{2} X T} \tag{2}
\end{equation*}
$$

Because of the last term in above equation, which contains both x and t dependence, we are unable to successfully complete the separation process (i.e., we are unable to get all of the x dependence on one side of the equation and all of the t dependence on the other). Thus, we suggest seeking y in the form

$$
\begin{equation*}
y(x, t)=y_{p}(x)+X(x) T(t) \tag{3}
\end{equation*}
$$

instead. Putting Eq. 3 into Eq. 1, obtain

$$
\begin{equation*}
c^{2} y_{p}^{\prime \prime}+c^{2} X^{\prime \prime} T=X T^{\prime \prime}+g \tag{4}
\end{equation*}
$$

Thus, we can remove the unwelcome g term by setting $c^{2} y_{p}^{\prime \prime}=g$. Then we can complete the separation of variable in Eq. 4 as usual. Mathematically, $y_{p}(x)$ is a particular solution of the nonhomogeneus equation Eq. 1 since it satisfies the full equation (7.1), and $X T$ is a solution of the associated homogeneous equation $c^{2} y_{x x}=y_{t t}$. But in physical terms you will find that it is simply the "static sag" of the string due to gravity, satisfying the problem

$$
c^{2} y_{p}^{\prime \prime}(x)=g, y_{p}(0)=0, y_{p}(L)=0
$$

Due date is Friday $21^{\text {th }}$ of October. For each day delay $\mathbf{1 5}$ points will be reduced.

