

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MAK 413 MECHANICS OF COMPOSITE MATERIALS

SPRING 2018

Due Date: 05.02.2018- Monday* (08:30)

HOMEWORK 1

1. Kaw 2nd ed. Prob. 2.2

2.2 The engineering constants for an orthotropic material are found to be

$$E_1 = 4 Msi$$
, $E_3 = 3 Msi$, $E_3 = 3.1 Msi$,
 $v_{12} = 0.2$, $v_{23} = 0.4$, $v_{31} = 0.6$,
 $G_{12} = 6 Msi$, $G_{23} = 7 Msi$, $G_{31} = 2 Msi$

Find the stiffness matrix [*C*] and the compliance matrix [*S*] for the preceding orthotropic material.

2. Kaw 2nd ed. Prob. 2.3

2.3 Consider an orthotropic material with the stiffness matrix given by

$$[C] = \begin{bmatrix} -0.67308 & -1.8269 & -1.0577 & 0 & 0 & 0 \\ -1.8269 & -0.67308 & -1.4423 & 0 & 0 & 0 \\ -1.0577 & -1.4423 & 0.48077 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1.5 \end{bmatrix} GPa$$

Find:

- 1. The stresses in the principal directions of symmetry if the strains in the principal directions of symmetry at a point in the material are ϵ_1 = 1 $\mu m/m$, ϵ_2 = 3 $\mu m/m$, ϵ_3 = 2 $\mu m/m$; γ_{23} = 0, γ_{31} = 5 $\mu m/m$, γ_{12} = 6 $\mu m/m$
- 2. The compliance matrix [S]
- 3. The engineering constants E_1 , E_2 , E_3 , V_{12} , V_{23} , V_{31} , G_{12} , G_{23} , G_{31}
- 4. The strain energy per unit volume at the point where strains are given in part (1.)

3. Kaw 2nd ed. Prob. 2.10

2.10 Find the reduced stiffness [Q] and the compliance [S] matrices for a unidirectional lamina of boron/epoxy. Use the properties of a unidirectional boron/epoxy lamina from Table 2.1.

4. Kaw 2nd ed. Prob. 2.11

2.11 Find the strains in the 1–2 coordinate system (local axes) in a unidirectional boron/epoxy lamina, if the stresses in the 1–2 coordinate system applied to are $\sigma_1 = 4$ MPa, $\sigma_2 = 2$ MPa, and $\tau_{12} = -3$ MPa. Use the properties of a unidirectional boron/epoxy lamina from Table 2.1.

5. Kaw 2nd ed. Prob. 2.14

2.14 Consider a unidirectional continuous fiber composite. Start from $[\sigma]$ = [Q] [ϵ] and follow the procedure in Section 2.4.3 to get

$$E_1 = Q_{11} - \frac{Q_{12}^2}{Q_{22}}$$
 $v_{12} = \frac{Q_{12}}{Q_{22}}$

$$E_2 = Q_{22} - \frac{Q_{12}^2}{Q_{11}}$$
 $v_{21} = \frac{Q_{12}}{Q_{11}}$ $G_{12} = Q_{66}$.

Due date is **Monday 5th of February**, **2018**. For each delayed day **15 points** will be reduced.