MAK 206 HW #6

*6–80. If the beam is subjected to an internal moment of $M=100 \,\mathrm{kN}\cdot\mathrm{m}$, determine the bending stress developed at points A,B and C. Sketch the bending stress distribution on the cross section.

6–81. If the beam is made of material having an allowable tensile and compressive stress of $(\sigma_{\rm allow})_t=125$ MPa and $(\sigma_{\rm allow})_c=150$ MPa, respectively, determine the maximum allowable internal moment M that can be applied to the beam.

6–99. If the beam has a square cross section of 6 in. on each side, determine the absolute maximum bending stress in the beam.

Prob. 6-99

6-158. Determine the shape factor for the wide-flange beam.

Probs. 6-80/81

6-183. Determine the shape factor for the wide-flange beam.

*6–184. The beam is made of an elastic plastic material for which $\sigma_{\Upsilon}=250$ MPa. Determine the residual stress in the beam at its top and bottom after the plastic moment \mathbf{M}_p is applied and then released.

Prob. 6-158

Probs. 6-183/184