MAK 206 HW #1

*1-64. A vertical force of $P = 1500 \,\mathrm{N}$ is applied to the bell crank. Determine the average normal stress developed in the 10-mm diamater rod CD, and the average shear stress developed in the 6-mm diameter pin B that is subjected to double shear.

1-66. Determine the largest load P that can be applied to the frame without causing either the average normal stress or the average shear stress at section a-a to exceed $\sigma = 150$ MPa and $\tau = 60$ MPa, respectively. Member CB has a square cross section of 25 mm on each side.

1-74. Member B is subjected to a compressive force of 600 lb. If A and B are both made of wood and are 1.5 in. thick, determine to the nearest $\frac{1}{8}$ in. the smallest dimension a of the support so that the average shear stress along the blue line does not exceed $\tau_{\text{allow}} = 50$ psi. Neglect friction.

Prob. 1-74

1-86. The two aluminum rods support the vertical force of 1-103. The yoke-and-rod connection is subjected to a P = 20 kN. Determine their required diameters if the allowable tensile stress for the aluminum is $\sigma_{\text{allow}} = 150 \text{ MPa}$.

tensile force of 5 kN. Determine the average normal stress in each rod and the average shear stress in the pin A between the members.

