8-21. The offset link has a width of $w=200 \mathrm{~mm}$ and a thickness of 40 mm . If the allowable normal stress is $\sigma_{\text {allow }}=75 \mathrm{MPa}$, determine the maximum load P that can be applied to the cables.

$A=0.2(0.04)=0.008 \mathrm{~m}^{2}$
$I=\frac{1}{12}(0.04)(0.2)^{3}=26.6667\left(10^{-6}\right) \mathrm{m}^{4}$
$\sigma=\frac{P}{A}+\frac{M c}{I}$
$75\left(10^{6}\right)=\frac{P}{0.008}+\frac{0.150 P(0.1)}{26.6667\left(10^{-6}\right)}$
$P=109 \mathrm{kN}$
Ans

8-35 The cantilevered beam is used to support the load of
8 kN . Determine the state of stress at points A and B, and
sketch the results on differential elements located at each of
these points.

$I=2\left[\frac{1}{12}(0.01)\left(0.1^{3}\right)\right]+\frac{1}{12}(0.08)\left(0.01^{3}\right)=1.6733\left(10^{-6}\right) \mathrm{m}^{4}$
$A=2[0.01(0.1)]+0.08(0.01)=0.0028 \mathrm{~m}^{2}$
$Q_{A}=\bar{y}_{A}^{\prime} A=0.0375(0.025)(0.01)=9.375\left(10^{-6}\right) \mathrm{m}^{3}$
$Q_{B}=\bar{y}_{B}^{\prime} A=0.0275(0.045)(0.01)=12.375\left(10^{-6}\right) \mathrm{m}^{3}$
$\sigma=\frac{M y}{I}$
$\sigma_{A}=\frac{24\left(10^{3}\right)(0.025)}{1.6733\left(10^{-6}\right)}=359 \mathrm{MPa}(\mathrm{T})$
Ans

$\sigma_{B}=\frac{24\left(10^{3}\right)(0.005)}{1.6733\left(10^{-6}\right)}=71.7 \mathrm{MPa}(\mathrm{T})$
Ans
$\tau=\frac{V Q}{I t}$
$\tau_{A}=\frac{8\left(10^{3}\right)(9.375)\left(10^{-6}\right)}{1.6733\left(10^{-6}\right)(0.01)}=4.48 \mathrm{MPa}$
Ans
$\tau_{B}=\frac{8\left(10^{3}\right)(12.375)\left(10^{-6}\right)}{1.6733\left(10^{-6}\right)(0.01)}=5.92 \mathrm{MPa} \quad$ Ans

8-45 The pliers are made from two steel parts pinned together at A. If a smooth bolt is held in the jaws and a gripping force of 50 N is applied at the handles, determine the state of stress developed in the pliers at points B and C. Here the cross section is rectangular, having the dimensions shown in the figure.

$+\Sigma F_{x}=0 ;$	$N-50 \sin 30^{\circ}=0 ;$	$N=25 \mathrm{~N}$
$+\Sigma F_{y}=0 ;$	$V-50 \cos 30^{\circ}=0 ;$	$V=43.3 \mathrm{~N}$
$\downarrow+\Sigma M_{C}=0 ;$	$M-50(60)=0 ;$	$M=3000 \mathrm{~N} \cdot \mathrm{~mm}$
$A=4 \times 8=32 \mathrm{~mm}^{2}$		

$I=\frac{1}{12}(4)\left(8^{3}\right)=170.67 \mathrm{~mm}^{4}$
$Q_{B}=0$
$Q_{C}=\bar{y}^{\prime} \mathrm{A}^{\prime}=(2)(4)(4)=32 \mathrm{~mm}^{3}$
Point B:
$\sigma_{B}=\frac{N}{A}+\frac{M y}{I}=\frac{-25}{32}+\frac{3000(4)}{170.67}=69.53 \mathrm{MPa}(\mathrm{T}) \quad$ Ans
$\tau_{B}=\frac{V Q}{I t}=0$
Point C:
$\sigma_{C}=\frac{N}{A}+\frac{M y}{I}=\frac{-25}{32}+0=-0.78 \mathrm{MPa}=0.78 \mathrm{MPa}(\mathrm{C})$

Shear Stress:
$\tau_{C}=\frac{V Q}{I t}=\frac{43.3(32)}{170.67(4)}=2.03 \mathrm{MPa}$

8-57 The 1-mm-diameter rod is subjected to the loads shown. Determine the state of stress at point B, and show the results on a differential element located at this point.
$\Sigma F_{z}=0 ; \quad V_{z}+100=0 ; \quad V_{z}=-100 \mathrm{~N}$
$\Sigma F_{x}=0 ; \quad N_{x}-75=0 ; \quad N_{x}=75.0 \mathrm{~N}$
$\Sigma F_{y}=0 ; \quad V_{y}-80=0 ; \quad V_{y}=80 \mathrm{~N}$
$\Sigma M_{z}=0 ; \quad M_{z}+80(8)=0 ; \quad M_{z}=-640 \mathrm{~N} \cdot \mathrm{~mm}$
$\Sigma M_{x}=0 ; \quad T_{x}+80(3)=0 ; \quad T_{x}=-240 \mathrm{~N} \cdot \mathrm{~mm}$
$\Sigma M_{y}=0 ; \quad M_{y}+1000(8)-75(3)=0 ; \quad M_{y}=-575 \mathrm{~N} \cdot \mathrm{~mm}$
$A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}\left(1^{2}\right)=\frac{\pi}{4} \mathrm{~mm}^{2}$
$J=\frac{\pi}{2} c^{4}=\frac{\pi}{2}\left(0.5^{4}\right)=0.03125 \pi \mathrm{~mm}^{4}$

$\sigma=\frac{P}{A}+\frac{M_{z} y}{I_{z}}+\frac{M_{y} z}{I_{y}}$
$\sigma_{B}=\frac{75}{\frac{\pi}{4}}+0-\frac{575(0.5)}{0.015625 \pi}=-5.76 \mathrm{MPa}=5.76 \mathrm{MPa}(\mathrm{C})$ Ans

Shear stress:
$\tau=\frac{V Q}{I t}$ and $\tau=\frac{T c}{J}$
$\left(\tau_{x y}\right)_{B}=\frac{T c}{J}-\frac{V Q}{I t}=\frac{240(0.5)}{0.03125 \pi}+\frac{80(0.0833)}{0.015625 \pi(1)}=1.36 \mathrm{MPa} \quad$ Ans
$\left(\tau_{x z}\right)_{B}=0$

8-58 The post has a circular cross section of radius
Determine the maximum radius e at which the load can be
applied so that no part of the post experiences a tensile
stress. Neglect the weight of the post.

Require $\sigma_{A}=0$
$\sigma_{A}=0=\frac{P}{A}+\frac{M c}{I} ; \quad 0=\frac{-P}{\pi c^{2}}+\frac{(P e) c}{\frac{\pi}{4} c^{4}}$
$e=\frac{c}{4}$
Ans

