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Draw the shear and moment diagrams for the beam shown in Fig. 6–4a.
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Solution

Support Reactions. The support reactions have been determined,
Fig. 6–4d.

Shear and Moment Functions. The beam is sectioned at an arbitrary
distance x from the support A, extending within region AB, and the free-
body diagram of the left segment is shown in Fig. 6–4b. The unknowns
V and M are indicated acting in the positive sense on the right-hand face
of the segment according to the established sign convention. Applying
the equilibrium equations yields

(1)

(2)

A free-body diagram for a left segment of the beam extending a
distance x within region BC is shown in Fig. 6–4c. As always, V and M
are shown acting in the positive sense. Hence,

(3)

(4)

The shear diagram represents a plot of Eqs. 1 and 3, and the moment
diagram represents a plot of Eqs. 2 and 4, Fig. 6–4d. These equations can
be checked in part by noting that and in each
case. (These relationships are developed in the next section as Eqs. 6–1
and 6–2.)
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Draw the shear and moment diagrams for the beam shown in Fig. 6–5a.
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Solution

Support Reactions. The support reactions have been determined in
Fig. 6–5d.

Shear and Moment Functions. This problem is similar to the previous
example, where two x coordinates must be used to express the shear and
moment in the beam throughout its length. For the segment within region
AB, Fig. 6–5b, we have

And for the segment within region BC, Fig. 6–5c,

Shear and Moment Diagrams. When the above functions are plotted,
the shear and moment diagrams shown in Fig. 6–5d are obtained. In this
case, notice that the shear is constant over the entire length of the beam;
i.e., it is not affected by the couple moment acting at the center of
the beam. Just as a force creates a jump in the shear diagram, Example
6–1, a couple moment creates a jump in the moment diagram.

M0

M = M0a1 -
x

L
b

M = M0 -
M0

L
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L
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M0

L
+q©Fy = 0;
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Draw the shear and moment diagrams for the beam shown in Fig. 6–6a.

Solution

Support Reactions. The support reactions have been computed in
Fig. 6–6c.

Shear and Moment Functions. A free-body diagram of the left segment
of the beam is shown in Fig. 6–6b.The distributed loading on this segment
is represented by its resultant force only after the segment is isolated as
a free-body diagram. Since the segment has a length x, the magnitude of
the resultant force is wx. This force acts through the centroid of the area
comprising the distributed loading, a distance of x/2 from the right end.
Applying the two equations of equilibrium yields

(1)

(2)

These results for V and M can be checked by noting that 
This is indeed correct, since positive w acts downward. Also, notice that

Shear and Moment Diagrams. The shear and moment diagrams
shown in Fig. 6–6c are obtained by plotting Eqs. 1 and 2. The point of
zero shear can be found from Eq. 1:

From the moment diagram, this value of x happens to represent the
point on the beam where the maximum moment occurs, since by 
Eq. 6–2, the slope From Eq. 2, we have
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Draw the shear and moment diagrams for the beam shown in 
Fig. 6–7a.
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Solution

Support Reactions. The distributed load is replaced by its resultant
force and the reactions have been determined as shown in Fig. 6–7b.

Shear and Moment Functions. A free-body diagram of a beam
segment of length x is shown in Fig. 6–7c. Note that the intensity of
the triangular load at the section is found by proportion, that is,

or With the load intensity known, the
resultant of the distributed loading is determined from the area under
the diagram, Fig. 6–7c. Thus,

(1)

(2)

These results can be checked by applying Eqs. 6–1 and 6–2, that is,

OK

OK

Shear and Moment Diagrams. The graphs of Eqs. 1 and 2 are shown
in Fig. 6–7d.
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Fig. 6–8
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Draw the shear and moment diagrams for the beam shown in Fig. 6–8a.

Solution

Support Reactions. The distributed load is divided into triangular and
rectangular component loadings and these loadings are then replaced
by their resultant forces.The reactions have been determined as shown
on the beam’s free-body diagram, Fig. 6–8b.

Shear and Moment Functions. A free-body diagram of the left
segment is shown in Fig. 6–8c. As above, the trapezoidal loading is
replaced by rectangular and triangular distributions. Note that the
intensity of the triangular load at the section is found by proportion.
The resultant force and the location of each distributed loading are
also shown. Applying the equilibrium equations, we have

(1)

(2)

Equation 2 may be checked by noting that that is, Eq. 1.
Also, This equation checks, since when 
w � 2 kN/m, and when x � 18 m, w � 6 kN/m, Fig. 6–8a.

Shear and Moment Diagrams. Equations 1 and 2 are plotted in Fig.6–8d.
Since the point of maximum moment occurs when then,
from Eq. 1,

Choosing the positive root,
x � 9.735 m

Thus, from Eq. 2,
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Draw the shear and moment diagrams for the beam shown in Fig. 6–9a.
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Solution

Support Reactions. The reactions at the supports have been determined
and are shown on the free-body diagram of the beam, Fig. 6–9d.

Shear and Moment Functions. Since there is a discontinuity of
distributed load and also a concentrated load at the beam’s center,
two regions of x must be considered in order to describe the shear
and moment functions for the entire beam.

Fig. 6–9b:

(1)

(2)

Fig. 6–9c:

(3)

(4)

These results can be checked in part by noting that by applying
and Also, when Eqs. 1 and 2 give

and when Eqs. 3 and 4 give
and These values check with the support

reactions shown on the free-body diagram, Fig. 6–9d.

Shear and Moment Diagrams. Equations 1 through 4 are plotted in
Fig. 6–9d.

M = 0.V = -34.25 kN
x2 = 10 m,M = 80 kN # m;V = 5.75 kN

x1 = 0,V = dM>dx.w = -dV>dx

M = 1-2.5x2 

2 + 15.75x2 + 92.52 kN # m
+ 5 kN>m1x2 - 5 m2ax2 - 5 m

2
b + M = 0

-80 kN # m - 5.75 kN x2 + 15 kN1x2 - 5 m2d+©M = 0;

V = 115.75 - 5x22 kN

5.75 kN - 15 kN - 5 kN>m1x2 - 5 m2 - V = 0+q©Fy = 0;

5 m 6 x2 … 10 m,

M = 15.75x1 + 802 kN # m
-80 kN # m - 5.75 kN x1 + M = 0d+©M = 0;

V = 5.75 kN

5.75 kN - V = 0+q©Fy = 0;

0 … x1 6 5 m,
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Draw the shear and moment diagrams for the beam in Fig. 6–13a.
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Solution

Support Reactions. The reactions are shown on a free-body diagram,
Fig. 6–13b.

Shear Diagram. According to the sign convention, Fig. 6–3, at 
and at These points are plotted in Fig. 6–13b.

Since Fig. 6–13a, the slope of the shear diagram will be zero
at all points, and therefore a horizontal straight line

connects the end points.
1dV>dx = -w = 02w = 0,

V = +P.x = L,V = +P
x = 0,

Moment Diagram. At and at 
Fig. 6–13d.The shear diagram indicates that the shear is constant positive
and therefore the slope of the moment diagram will be constant positive,

at all points. Hence, the end points are connected by
a straight positive sloped line as shown in Fig. 6–13d.
dM>dx = V = +P

M = 0,x = L,M = -PLx = 0,
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Draw the shear and moment diagrams for the beam shown in Fig. 6–14a.
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Solution

Support Reactions. The reaction at the fixed support is shown on the
free-body diagram, Fig. 6–14b.

Shear Diagram. The shear at each end is plotted first, Fig. 6–14c.
Since no distributed load exists on the beam the shear diagram will have
zero slope, at all points. Therefore, a horizontal line connects the end
points, which indicates that the shear is zero throughout the beam.

V = 0

Moment Diagram. The moment at the beam’s end points is plotted
first, Fig. 6–14d. From the shear diagram the slope of the moment diagram
will be zero since Therefore, a horizontal line connects the end
points as shown.

V = 0.

M0
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Draw the shear and moment diagrams for the beam shown in Fig. 6–15a.
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Solution

Support Reactions. The reactions at the fixed support are shown on
the free-body diagram, Fig. 6–15b.

Shear Diagram. The shear at each end point, is plotted first, Fig. 6–15c.
The distributed loading on the beam is constant positive, and so the slope
of the shear diagram will be constant negative This
requires a straight negative sloped line that connects the end points.

1dV>dx = -w02.

Moment Diagram. The moment at each end point is plotted first,
Fig. 6–15d. The shear diagram indicates that V is positive and decreases
from to zero, and so the moment diagram must start with a positive
slope of and decrease to zero. Specifically, since the shear diagram
is a straight sloping line, the moment diagram will be parabolic, having
a decreasing slope as shown in the figure.

w0 L
w0 L
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Draw the shear and moment diagrams for the beam shown in Fig. 6–16a.

Solution

Support Reactions. The reactions at the fixed support have been
calculated and are shown on the free-body diagram, Fig. 6–16b.
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Shear Diagram. The shear at each end point is plotted first, Fig. 6–16c.
The distributed loading on the beam is positive yet decreasing. Therefore,
the slope of the shear diagram will be negatively decreasing. At , the
slope begins at and goes to zero at Since the loading is linear,
the shear diagram is a parabola having a negatively decreasing slope.

x = L.-w0

x = 0

Moment Diagram. The moment at each end is plotted first, Fig. 6–16d.
From the shear diagram, V is positive but decreases from at 
to zero at The curve of the moment diagram having this slope
behavior is a cubic function of x, as shown in the figure.

x = L.
x = 0w0 L>2
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Draw the shear and moment diagrams for the beam in Fig. 6–17a.
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Solution

Support Reactions. The reactions have been determined and are
shown on the free-body diagram, Fig. 6–17b.

Shear Diagram. The end points V � �1.5, and x � 4.5, V � �3,
are plotted first, Fig. 6–17c. From the behavior of the distributed load, the
slope of the shear diagram will vary from zero at to at x � 4.5.
As a result, the shear diagram is a parabola having the shape shown.

The point of zero shear can be found by using the method of sections
for a beam segment of length x, Fig. 6–17e. We require that so
that

Moment Diagram. The end points and 
are plotted first, Fig. 6–17d. From the behavior of the shear

diagram, the slope of the moment diagram will begin at �1.5, then it
becomes decreasingly positive until it reaches zero at 2.6 m. It then
becomes increasingly negative reaching �3 at x � 4.5 m. Here the
moment diagram is a cubic function of x. Why?

Notice that the maximum moment is at x � 2.6, since 
at this point. From the free-body diagram in Fig. 6–17e we have

M � 2.6 kN · m
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Draw the shear and moment diagrams for the beam shown in 
Fig. 6–18a.
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Solution

Support Reactions. The reactions are indicated on the free-body
diagram, Fig. 6–18b.

Shear Diagram. At and at 
Fig. 6–18c.At intermediate points between each force,

the slope of the shear diagram will be zero.Why? Hence, the shear retains
its value of up to point B. AT B, the shear is discontinuous, since
there is a concentrated force of 8 kN there.The value of the shear just to
the right of B can be found by sectioning the beam at this point, Fig.
6–18e, where for equilibrium Use the method of sections
and show that the diagram “jumps” again at C, as shown, then closes to
the value of at D.

It should be noted that based on Eq. 6–5, the shear
diagram can also be constructed by “following the load” on the free-
body diagram. Beginning at A the 4.8-kN force acts upward, so

No distributed load acts between A and B, so the shear
remains constant At B the 8-kN force is down, so the
shear jumps down 8 kN, from to Again, the shear
is constant from B to C (no distributed load), then at C it jumps down
another 8 kN to Finally, with no distributed load between
C and D, it ends at 

Moment Diagram. The moment at each end of the beam is zero,
Fig. 6–18d. The slope of the moment diagram from A to B is constant
at Why? The value of the moment at B can be determined by
using statics, Fig. 6–18c, or by finding the area under the shear diagram
between A and B, that is, Since

then 
From point B, the slope of the moment diagram is until point C is
reached. Again, the value of the moment can be obtained by statics or
by finding the area under the shear diagram from B to C, that is,

so that 
Continuing in this manner, verify that 

closure occurs at D.
- 6.4 kN # m = 22.4 kN # m.

MC = 28.8 kN # m¢MBC = 1-3.2 kN212 m2 = -6.4 kN # m,

-3.2
MB = MA + ¢MAB = 0 + 28.8 kN # m = 28.8 kN # m.MA = 0,

¢MAB = 14.8 kN216 m2 = 28.8 kN # m.

+4.8.

-11.2 kN.
-11.2 kN.

-3.2 kN.+4.8 kN
1dV>dx = 02.VA = +4.8 kN.

¢V = -F,
-11.2 kN

V = -3.2 kN.

+4.8

-11.2 kN,VD =
x = 10,VA = +4.8 kN,x = 0,
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Draw the shear and moment diagrams for the overhanging beam
shown in Fig. 6–19a.
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Solution

Support Reactions. The free-body diagram with the calculated
support reactions is shown in Fig. 6–19b.

Shear Diagram. As usual we start by plotting the end shears 
VA � �4.40 kN, and Fig. 6–19c. The shear diagram will have
zero slope from A to B. It then jumps down 8 kN to �3.60 kN. It then
has a slope that is increasingly negative.The shear at C can be determined
from the area under the load diagram, VC � VB � ∆VBC � �3.60 kN
�(1/2)(6 m)(2 kN/m) � �9.60 kN. It then jumps up 17.6 kN to 8 kN.
Finally, from C to D, the slope of the shear diagram will be constant yet
negative, until the shear reaches zero at D.

Moment Diagram. The end moments and are
plotted first, Fig. 6–19d. Study the diagram and note how the slopes
and therefore the various curves are established from the shear
diagram using Verify the numerical values for the peaks
using the method of sections and statics or by computing the
appropriate areas under the shear diagram to find the change in
moment between two points. In particular, the point of zero moment
can be determined by establishing M as a function of x, where, for
convenience, x extends from point B into region BC, Fig. 6–19e. Hence,

x � 3.94 m

Reviewing these diagrams, we see that because of the integration
process for region AB the load is zero, shear is constant, and moment
is linear; for region BC the load is linear, shear is parabolic, and
moment is cubic; and for region CD the load is constant, the shear
is linear, and the moment is parabolic. It is recommended that
Examples 6.1 through 6.6 also be solved using this method.

M = a - 1
18

 x3 - 3.60x + 17.6b  kip # ft = 0

-4.40 kip14 ft + x2 + 8 kip1x2 +
1
2

 a2 kip>ft
6 ft

bx1x2ax

3
b + M = 0

d+©M = 0;

dM>dx = V.

MD = 0MA = 0

VD = 0,

�4.40 kN(4 m � x) � 8 kN(x)

kN · m � 0

( )2 kN/m
———

6 m



E X A M P L E 6.14

A beam has a rectangular cross section and is subjected to the stress
distribution shown in Fig. 6–27a. Determine the internal moment M at the
section caused by the stress distribution (a) using the flexure formula, (b)
by finding the resultant of the stress distribution using basic principles.

A

N

60 mm

60 mm

20 MPa

20 MPa
(a)

600 mm

Fig. 6–27

Solution

Part (a). The flexure formula is From Fig. 6–27a,
c � 60 mm and �max � 20 MPa. The neutral axis is defined as line NA,
because the stress is zero along this line. Since the cross section has a
rectangular shape, the moment of inertia for the area about NA is
determined from the formula for a rectangle given on the inside front
cover; i.e.,

Therefore,

20 N/mm2 � ——————

M � 288(104) N · mm � 2.88 kN · m Ans.

smax =
Mc

I
;

I =
1

12
 bh3 =

1
12

 16 in.2112 in.23 = 864 in4

smax = Mc>I.

Continued

(60 mm)(120 mm)3 � 864(104) mm4

M(60 mm)
———————

864(104) mm4



Fig. 6–27b

Part (b). First we will show that the resultant force of the stress distribution
is zero. As shown in Fig. 6–27b, the stress acting on the arbitrary element
strip dA � (60 mm) dy, located y from the neutral axis, is

The force created by this stress is and thus, for the entire
cross section,

––––––––

The resultant moment of the stress distribution about the neutral axis
(z axis) must equal M. Since the magnitude of the moment of dF about
this axis is and dM is always positive, Fig. 6–27b, then for
the entire area,

—————

——––––

� 288(104) N · mm � 2.88 kN · m Ans.

The above result can also be determined without the need for
integration. The resultant force for each of the two triangular stress
distributions in Fig. 6–27c is graphically equivalent to the volume
contained within each stress distribution. Thus, each volume is

F �   (60 mm)(20 N/mm2)(60 mm) � 36(103) N � 36 kN

These forces, which form a couple, act in the same direction as the stresses
within each distribution, Fig. 6–27c. Furthermore, they act through 
the centroid of each volume, i.e., (60 mm) � 20 mm from the top and
bottom of the beam. Hence the distance between them is 80 mm as
shown. The moment of the couple is therefore

M � 36 kN (80 mm) � 2880 kN · mm � 2.88 kN · m Ans.

 = a2
3

 kip>in2by3 `
-6 in.

+6 in.

 M = �
A

 y dF = �
6 in.

-6 in.

 y c a y

6 in.
b12 kip>in22 d16 in.2 dy

dM = y dF,

 = 1-1 kip>in22y2 `
-6 in.

+6 in.

= 0

 FR = �
A

s dA = �
6 in.

-6 in.

c a -y

6 in.
b12 kip>in22 d16 in.2 dy

dF = s dA,

s = a -y

6 in.
b12 kip>in22

A

N

60 mm

60 mm

F

–F

(c)

60 mm

40 mm

40 mm

Fig. 6–27

z

60 mm

60 mm

20 MPa

20 MPa

60 mm

x

y

d F

dy

dA

(b)

y

(20 N/mm2)
�y

——––
60 mm( )

�60 mm

� (�10 N/mm2)

)

�60 mm
� 0

�60 mm

�60 mm
[ �y

——––
60 mm( ) (60 mm) dy(20 N/mm2) ]

�60 mm

�60 mm
y [ y

——––
60 mm( ) (60 mm) dy(20 N/mm2) ]

� — N/mm220
—
3

( �60 mm

�60 mm

1
—
2

1–3



Fig. 6–28c

Fig. 6–28a

E X A M P L E 6.15

The simply supported beam in Fig. 6–28a has the cross-sectional area
shown in Fig. 6–28b. Determine the absolute maximum bending stress
in the beam and draw the stress distribution over the cross section at
this location.

20 mm

N A

B
C

D

20 mm

250 mm

150 mm

150 mm

(b)

20 mm

6 m

5 kN/m

3 m

a

(a)

M (kN�m)

x (m)

22.5

3 6

(c)

Fig. 6–28

Solution

Maximum Internal Moment. The maximum internal moment in the
beam, occurs at the center as shown on the bending
moment diagram, Fig. 6–28c. See Example 6.3.

Section Property. By reasons of symmetry, the centroid C and thus the
neutral axis pass through the midheight of the beam, Fig. 6–28b.The area
is subdivided into the three parts shown, and the moment of inertia of
each part is computed about the neutral axis using the parallel-axis
theorem. (See Eq. A–5 of Appendix A.) Choosing to work in meters, we
have

 = 301.3110-62 m4

 + c 1
12

 10.020 m210.300 m23 d
 = 2 c 1

12
 10.25 m210.020 m23 + 10.25 m210.020 m210.160 m22 d

 I = ©1I + Ad22

M = 22.5 kN # m,

Continued



Fig. 6–28d

Bending Stress. Applying the flexure formula, with the
absolute maximum bending stress is

Ans.

Two-and-three-dimensional views of the stress distribution are shown
in Fig. 6–28d. Notice how the stress at each point on the cross section
develops a force that contributes a moment dM about the neutral axis
such that it has the same direction as M. Specifically, at point B,

and so

The normal stress acting on elements of material located at points B and D
is shown in Fig. 6–28e.

sB =
22.5 kN # m10.150 m2

301.3110-62 m4 = 11.2 MPasB =
MyB

I
;

yB = 150 mm,

smax =
22.5 kN # m10.170 m2

301.3110-62 m4 = 12.7 MPasmax =
Mc

I
;

c = 170 mm,

= 22.5 kN�m

12.7 MPa

11.2MPaB

D
M

12.7 MPa

12.7 MPa 11.2 MPa

12.7 MPa

B

D

= 22.5 kN�mM

(d)

12.7 MPa

12.7 MPa

11.2 MPa

11.2 MPa

(e)

B D



Fig. 6–29b

Fig. 6–29a

E X A M P L E 6.16

The beam shown in Fig. 6–29a has a cross-sectional area in the shape
of a channel, Fig. 6–29b. Determine the maximum bending stress that
occurs in the beam at section a–a.

Solution

Internal Moment. Here the beam’s support reactions do not have
to be determined. Instead, by the method of sections, the segment to
the left of section a–a can be used, Fig. 6–29c. In particular, note that
the resultant internal axial force N passes through the centroid of the
cross section. Also, realize that the resultant internal moment must be
computed about the beam’s neutral axis at section a–a.

To find the location of the neutral axis, the cross-sectional area is
subdivided into three composite parts as shown in Fig. 6–29b. Since
the neutral axis passes through the centroid, then using Eq. A–2 of
Appendix A, we have

2 m 1 m

2.6 kN

12
5 a

a
(a)

13

2 m

M
N

V

(c)

2.4 kN

1.0 kN
0.05909 m

C

Fig. 6–29

250 mm

200 mm
AN

15 mm

20 mm

(b)

C

15 mm

–
y =59.09 mm

 = 0.05909 m = 59.09 mm

 y =
©yA

©A
=

2[0.100 m]10.200 m210.015 m2 + [0.010 m]10.02 m210.250 m2
210.200 m210.015 m2 + 0.020 m10.250 m2

This dimension is shown in Fig. 6–29c.
Applying the moment equation of equilibrium about the neutral

axis, we have

Section Property. The moment of inertia about the neutral axis is
determined using the parallel-axis theorem applied to each of the three
composite parts of the cross-sectional area. Working in meters, we have

M = 4.859 kN # m
24 kN12 m2 + 1.0 kN10.05909 m2 - M = 0d+©MNA = 0;

= 42.26110-62 m4

+ 2 c 1
12

 10.015 m210.200 m23 + 10.015 m210.200 m210.100 m - 0.05909 m22 d
I = c 1

12
 10.250 m210.020 m23 + 10.250 m210.020 m210.05909 m - 0.010 m22 d

Maximum Bending Stress. The maximum bending stress occurs at
points farthest away from the neutral axis. This is at the bottom of the
beam, Thus,

Ans.

Show that at the top of the beam the bending stress is 
Note that in addition to this effect of bending, the normal force of

and shear force will also contribute additional
stress on the cross section. The superposition of all these effects will
be discussed in a later chapter.

V = 2.4 kNN = 1 kN

s¿ = 6.79 MPa.

smax =
Mc

I
=

4.859 kN # m10.1409 m2
42.26110-62 m4 = 16.2 MPa

c = 0.200 m - 0.05909 m = 0.1409 m.



Fig. 6–30a

E X A M P L E 6.17

The member having a rectangular cross section, Fig. 6–30a, is designed to
resist a moment of In order to increase its strength and rigidity,
it is proposed that two small ribs be added at its bottom, Fig. 6–30b.
Determine the maximum normal stress in the member for both cases.

Solution

Without Ribs. Clearly the neutral axis is at the center of the cross
section, Fig. 6–30a, so Thus,

Therefore the maximum normal stress is

Ans.

With Ribs. From Fig. 6–30b, segmenting the area into the large main
rectangle and the bottom two rectangles (ribs), the location of the
centroid and the neutral axis is determined as follows:

This value does not represent c. Instead

Using the parallel-axis theorem, the moment of inertia about the
neutral axis is

c = 0.035 m - 0.01592 m = 0.01908 m

 = 0.01592 m

 =
[0.015 m]10.030 m210.060 m2 + 2[0.0325 m]10.005 m210.010 m2

10.03 m210.060 m2 + 210.005 m210.010 m2

 y =
©yA

©A

y

smax =
Mc

I
=
140 N # m210.015 m2

0.135110-62 m4 = 4.44 MPa

I =
1

12
 bh3 =

1
12

 10.06 m210.03 m23 = 0.135110-62 m4

y = c = 15 mm = 0.015 m.

40 N # m.
60 mm

30 mm

–y40 N·m

(a)

40 N�m

30 mm –
y

10 mm

10 mm

N

A

5 mm

(b)

Fig. 6–30

 = 0.1642110-62 m4

 + 2 c 1
12

 10.010 m210.005 m23 + 10.010 m210.005 m210.0325 m - 0.01592 m22 d
 I = c 1

12
 10.060 m210.030 m23 + 10.060 m210.030 m210.01592 m - 0.015 m22 d

Therefore, the maximum normal stress is

Ans.

This surprising result indicates that the addition of the ribs to the cross
section will increase the normal stress rather than decrease it, and for
this reason they should be omitted.

smax =
Mc

I
=

40 N # m10.01908 m2
0.1642110-62 m4 = 4.65 MPa



E X A M P L E 6.18

The rectangular cross section shown in Fig. 6–35a is subjected to a
bending moment of Determine the normal stress
developed at each corner of the section, and specify the orientation of
the neutral axis.

Solution

Internal Moment Components. By inspection, it is seen that the y and z
axes represent the principal axes of inertia since they are axes of symmetry
for the cross section. As required, we have established the z axis as the
principal axis for maximum moment of inertia.The moment is resolved into
its y and z components, where

Section Properties. The moments of inertia about the y and z axes are

Bending Stress. Thus,

 s = -
Mz y

Iz
+

My z

Iy

 Iz =
1

12
 10.2 m210.4 m23 = 1.067110-32 m4

 Iy =
1

12
 10.4 m210.2 m23 = 0.2667110-32 m4

 Mz =
3
5

 112 kN # m2 = 7.20 kN # m

 My = -
4
5

 112 kN # m2 = -9.60 KN # m

M = 12 kN # m.

x

z
y

(a)

M = 12 kN·m0.2 m

0.2 m

0.1 m

0.1 m

E

D

B
4

C

3

5

Fig. 6–35

Ans.

Ans.

Ans.

Ans. sE = -
7.2011032 N # m1-0.2 m2

1.067110-32 m4 +
-9.6011032 N # m1-0.1 m2

0.2667110-32 m4 = 4.95 MPa

 sD = -
7.2011032 N # m1-0.2 m2

1.067110-32 m4 +
-9.6011032 N # m10.1 m2

0.2667110-32 m4 = -2.25 MPa

 sC = -
7.2011032 N # m10.2 m2

1.067110-32 m4 +
-9.6011032 N # m10.1 m2

0.2667110-32 m4 = -4.95 MPa

 sB = -
7.2011032 N # m10.2 m2

1.067110-32 m4 +
-9.6011032 N # m1-0.1 m2

0.2667110-32 m4 = 2.25 MPa

The resultant normal-stress distribution has been sketched using these values,
Fig. 6–35b. Since superposition applies, the distribution is linear as shown. Continued



Fig. 6–35b Fig. 6–35c

(c)

3

45

= –53.1°θ

α

A

α

B C

D

N

y

z
= –79.4°

E

M = 12 kN�m

Orientation of Neutral Axis. The location z of the neutral axis (NA),
Fig. 6–35b, can be established by proportion. Along the edge BC, we
require

In the same manner, this is also the distance from D to the neutral
axis in Fig. 6–35b.

We can also establish the orientation of the NA using Eq. 6–19, which is
used to specify the angle that the axis makes with the z or maximum
principal axis.According to our sign convention, must be measured from
the axis toward the axis. By comparison, in Fig. 6–35c,
� � �tan�1 4–3 � �53.1° (or � � �306.9°).Thus,

Ans.

This result is shown in Fig. 6–35c. Using the value of z calculated
above, verify, using the geometry of the cross section, that one
obtains the same answer.

 a = -79.4°

 tan a =
1.067110-32 m4

0.2667110-32 m4 tan1-53.1°2

 tan a =
Iz

Iy
 tan u

+y+z
u

a

z = 0.0625 m

0.450 - 2.25z = 4.95z

2.25 MPa
z

=
4.95 MPa
10.2 m - z2

(b)

A

D

C

B

N

E

0.2 m

z

2.25 MPa

4.95 MPa

4.95 MPa

2.25 MPa



Fig. 6–36a

E X A M P L E 6.19

A T-beam is subjected to the bending moment of as shown in
Fig. 6–36a. Determine the maximum normal stress in the beam and the
orientation of the neutral axis.

15 kN # m

30 mm

100 mm

80 mm

80 mm
40 mm

30°

y

z

M = 15 kN·m

(a)

x

Solution

Internal Moment Components. The y and z axes are principal axes of
inertia. Why? From Fig. 6–36a, both moment components are positive.
We have

Section Properties. With reference to Fig. 6–36b, working in units of
meters, we have

Using the parallel-axis theorem of Appendix A, the
principal moments of inertia are thus

 Iz =
1

12
 10.100 m210.04 m23 +

1
12

 10.03 m210.200 m23 = 20.53110-62 m4

I = I + Ad2,

 = 0.0890 m

 z =
©zA

©A
=

[0.05 m]10.100 m210.04 m2 + [0.115 m]10.03 m210.200 m2
10.100 m210.04 m2 + 10.03 m210.200 m2

 Mz = 115 kN # m2 sin 30° = 7.50 kN # m
 My = 115 kN # m2 cos 30° = 12.99 kN # m

 = 13.92110-62 m4

 + c 1
12

 10.200 m210.03 m23 + 10.200 m210.03 m210.115 m - 0.0890 m22 d
 Iy = c 1

12
 10.04 m210.100 m23 + 10.100 m210.04 m210.0890 m - 0.05 m22 d (b)

y

z

0.03 m

0.100 m

0.080 m 0.080 m

0.02 m0.02 m

–z

Fig. 6–36

Continued



Fig. 6–36dFig. 6–36c

(c)

7.50 kN�m

12.99 kN�m
y

z

B

C

0.100 m

0.0410 m

0.0890 m

0.02 m

Maximum Bending Stress. The moment components are shown in 
Fig. 6–36c. By inspection, the largest tensile stress occurs at point B, since
by superposition both moment components create a tensile stress there.
Likewise, the greatest compressive stress occurs at point C. Thus,

Ans.

By comparison, the largest normal stress is therefore compressive and
occurs at point C.

Orientation of Neutral Axis. When applying Eq. 6–19, it is important
to be sure the angles and are defined correctly. As previously stated,
y must represent the axis for minimum principal moment of inertia, and
z must represent the axis for maximum principal moment of inertia.
These axes are properly positioned here since Using this setup,

and are measured positive from the axis toward the axis.
Hence, from Fig. 6–36a, Thus,

Ans.

The neutral axis is shown in Fig. 6–36d. As expected, it lies between the
y axis and the line of action of M.

a = 68.6°

tan a = a20.53110-62 m4

13.92110-62 m4 b  tan 60°

u = +60°.
+y+zau

Iy 6 Iz.

ua

 = -90.4 MPa

 sC = -
7.50 kN # m 10.020 m2

20.53110-62 m4 +
12.99 kN # m 1-0.0890 m2

13.92110-62 m4

 = 74.8 MPa

 sB = -
7.50 kN # m 1-0.100 m2

20.53110-62 m4 +
12.99 kN # m 10.0410 m2

13.92110-62 m4

 s = -
Mz y

Iz
+

My z

Iy

(d)

y

z

= 68.6° θ = 60°

M

A

N

α



Fig. 6–37a

E X A M P L E 6.20

The Z-section shown in Fig. 6–37a is subjected to the bending
moment of Using the methods of Appendix A (see
Example A.4 or A.5), the principal axes y and z are oriented as shown,
such that they represent the minimum and maximum principal
moments of inertia, and 
respectively. Determine the normal stress at point P and the
orientation of the neutral axis.

Solution
For use of Eq. 6–19, it is important that the z axis be the principal axis
for the maximum moment of inertia, which it is because most of the
area is located furthest from this axis.

Internal Moment Components. From Fig. 6–37a,

Bending Stress. The y and z coordinates of point P must 
be determined first. Note that the coordinates of P are

Using the colored and shaded triangles from the
construction shown in Fig. 6–37b, we have

Applying Eq. 6–17, we have

Ans.

Orientation of Neutral Axis. The angle is shown in 
Fig. 6–37a. Thus,

Ans.

The neutral axis is located as shown in Fig. 6–37b.

a = 85.3° 
tan a = c 7.54110-32 m4

0.960110-32 m4 d  tan 57.1°

u = 57.1°

 = 3.76 MPa

 = -
110.86 kN # m21-0.3580 m2

7.54110-32 m4 +
116.79 kN # m210.1852 m2

0.960110-32 m4

 sP = -
Mz yP

Iz
+

My zP

Iy

 zP = 0.35 cos 32.9° - 0.2 sin 32.9° = 0.1852 m

 yP = -0.35 sin 32.9° - 0.2 cos 32.9° = -0.3580 m

1-0.2 m, 0.35 m2. z¿y¿,

 Mz = 20 kN # m cos 57.1° = 10.86 kN # m
 My = 20 kN # m sin 57.1° = 16.79 kN # m

Iz = 7.54110-32 m4,Iy = 0.960110-32 m4

M = 20 kN # m.

(a)

z

z

= 57.1°

M

yM

P

400 mm

100 mm

300 mm

M = 20 kN�m

100 mm

32.9°

θ

y

z�

y�

A

zz�

(b)

N
      

0.350 m0.200 m

32.9°

32.9°









y

y�
= 85.3°α

P

Fig. 6–37



Fig. 6–40b

E X A M P L E 6.21

A composite beam is made of wood and reinforced with a steel strap locat-
ed on its bottom side. It has the cross-sectional area shown in Fig. 6–40a.
If the beam is subjected to a bending moment of deter-
mine the normal stress at points B and C. Take GPa and

GPa.Est = 200 GPa.
Ew = 12 GPa

M = 2 kN # m,

(a)

150 mm

20 mm

C

B
150 mm

M= 2 kN·m

Fig. 6–40

9 mm

(b)

150 mm

20 mm

C

B ′

_
y

N

A

150 mm

Solution

Section Properties Although the choice is arbitrary, here we will
transform the section into one made entirely of steel. Since steel has a
greater stiffness than wood the width of the wood must be
reduced to an equivalent width for steel. Hence n must be less than one.
For this to be the case, so that

The transformed section is shown in Fig. 6–40b.
The location of the centroid (neutral axis), computed from a reference

axis located at the bottom of the section, is

bst = nbw =
12 GPa

200 GPa
 1150 mm2 = 9 mm

n = Ew>Est,

1Est 7 Ew2,

The moment of inertia about the neutral axis is therefore

 = 9.358110-62 m4

 + c 1
12

 10.009 m210.150 m23 + 10.009 m210.150 m210.095 m - 0.03638 m22 d
 INA = c 1

12
 10.150 m210.02 m23 + 10.150 m210.02 m210.03638 m - 0.01 m22 d

y =
©yA

©A
=

[0.01 m]10.02 m210.150 m2 + [0.095 m]10.009 m210.150 m2
0.02 m10.150 m2 + 0.009 m10.150 m2 = 0.03638 m

Continued



Fig. 6–40dFig. 6–40c

7.78 MPa

C

3.50 MPa
0.210 MPa

1.71 MPa

B

(d)

= 2 kN�mM

Normal Stress. Applying the flexure formula, the normal stress at 
and C is

Ans.

The normal-stress distribution on the transformed (all steel) section is
shown in Fig. 6–40c.

The normal stress in the wood, located at B in Fig. 6–40a, is determined
from Eq. 6–21; that is,

Ans.

Using these concepts, show that the normal stress in the steel and the
wood at the point where they are in contact is and

respectively. The normal-stress distribution in the
actual beam is shown in Fig. 6–40d.
sw = 0.210 MPa,

sst = 3.50 MPa

sB = nsB¿ =
12 GPa

200 GPa
 128.56 MPa2 = 1.71 MPa

 sC =
2 kN # m10.03638 m2

9.358110-62 m4 = 7.78 MPa

 sB¿ =
2 kN # m10.170 m - 0.03638 m2

9.358110-62 m4 = 28.6 MPa

B¿

= 2 kN�m

7.78 MPa

28.6 MPa

3.50 MPa

B�

C

(c)

M



Fig. 6–41a

E X A M P L E 6.22

In order to reinforce the steel beam, an oak board is placed between its
flanges as shown in Fig. 6–41a. If the allowable normal stress for the steel
is (�allow)st � 168 MPa, and for the wood (�allow)w � 21 MPa, determine
the maximum bending moment the beam can support, with and without
the wood reinforcement. Est � 200 GPa, Ew � 12 GPa. The moment of
inertia of the steel beam is Iz � 7.93 � 106 mm4, and its cross-sectional
area is A � 5493.75 mm2.

100 mm

105 mm

z

5 mm

(a)

30 mm

c

(b)

N
z

A–y

100 mm

5 mm

18 mm

Fig. 6–41

Solution

Without Board. Here the neutral axis coincides with the z axis. Direct
application of the flexure formula to the steel beam yields

M � 12.688 kN · m Ans.

With Board. Since now we have a composite beam, we must transform
the section to a single material. It will be easier to transform the wood
to an equivalent amount of steel. To do this, Why? Thus, the
width of an equivalent amount of steel is

bst = nbw =
1.6011032 ksi

2911032 ksi
 112 in.2 = 0.662 in.

n = Ew>Est.

24 kip>in2 =
M14.200 in.2

20.3 in4

1sallow2st =
Mc

Iz

Continued

M(105 mm)
——————–
7.93(106) mm4

12(103) MPa
—–—–———–
200(103) MPa

(300 mm) � 18 mm

168 N/mm2 �



The transformed section is shown in Fig. 6–41b. The neutral axis is at

———

� 13.57 mm

And the moment of inertia about the neutral axis is

� (18 mm)(100 mm)3 � (18 mm)(100 mm)(55 mm � 13.57 mm)2

� 13.53(106) mm4

The maximum normal stress in the steel will occur at the bottom of
the beam, Fig. 6–41b. Here c � 105 mm � 13.57 mm � 118.57 mm. The
maximum moment based on the allowable stress for the steel is therefore

M � 19.17 kN · m

The maximum normal stress in the wood occurs at the top of the beam,
Fig. 6–41b. Here c� � 105 mm � 13.57 mm � 91.43 mm. Since 
the maximum moment based on the allowable stress for the wood is

M� � 51.79 kN · m

By comparison, the maximum moment is limited by the allowable
stress in the steel. Thus,

M � 19.17 kN · m Ans.

Note also that by using the board as reinforcement, one provides an
additional 51% moment capacity for the beam.

 3 kip>in2 = c1.6011032 ksi

2911032 ksi
d  M¿13.6907 in.2

33.68 in4

 1sallow2w = n 
M¿c¿

I

sw = nsst,

 24 kip>in2 =
M14.7093 in.2

33.68 in4

 1sallow2st =
Mc

I

 I = [20.3 in4 + 18.79 in2210.5093 in.22] +

 y =
©y
'

A

©A
=

[0]18.79 in22 + [2.20 in.]14 in.210.662 in.2
8.79 in2 + 410.662 in22

M�(91.43 mm)
—————–——
13.53 � 106 mm4

12(103) MPa
—–—–———–
200(103) MPa

21 N/mm2 � [ ]

M(118.57 mm)
———–————
13.53 � 106 mm4

[0](5493.75 mm2) � [55 mm](100 mm)(18 mm)
—–—–———–————————–—————–

5493.75 mm2 � 100(18) mm2

168 N/mm2 �

[7.93(106) mm2 � 5493.75 mm2(13.57 mm)2]

[ ]1
—
12 



Fig. 6–43a

Fig. 6–43b

(c)

9.20 MPa

169.84 MPa

169.84 MPa

120.90 mm

Fig. 6–43

E X A M P L E 6.23

The reinforced concrete beam has the cross-sectional area shown in 
Fig. 6–43a. If it is subjected to a bending moment of M � 60 kN · m, determine
the normal stress in each of the steel reinforcing rods and the maximum
normal stress in the concrete. Take Est � 200 GPa and Econc � 25 GPa.

Solution
Since the beam is made from concrete, in the following analysis we will
neglect its strength in supporting a tensile stress.

Section Properties. The total area of steel,Ast � 2[	(12.5 mm)2] � 982 mm2

will be transformed into an equivalent area of concrete, Fig. 6–43b. Here

A� � nAst � —————–—  (982 mm2) � 7856 mm2

We require the centroid to lie on the neutral axis. Thus or

——

h�2 � 52.37h� � 20949.33 � 0

Solving for the positive root,

h� � 120.90 mm

Using this value for the moment of inertia of the transformed section,
computed about the neutral axis, is

h¿,

12 in.1h¿2 
h¿
2

- 12.65 in2116in. - h¿2 = 0

©y
'

A = 0,

C
AN

300 mm

h� 400 mm

A¿ = 7856 mm2

(b)

300 mm

450 mm

50 mm25-mm-diameter bars

60 kN�m

� 788.67 � 106 mm4

 I = c 1
12

 112 in.214.85 in.23 + 12 in.14.85 in.2a4.85 in.
2
b2 d + 12.65 in2116 in. - 4.85 in.22

Normal Stress. Applying the flexure formula to the transformed
section, the maximum normal stress in the concrete is

(�conc)max �                                                                 � 9.20 MPa Ans.

The normal stress resisted by the “concrete” strip, which replaced the
steel, is

��conc �                                                                               � 21.23 MPa

The normal stress in each of the two reinforcing rods is therefore

�st � n��conc �                            21.23 MPa � 169.84 MPa Ans.

The normal-stress distribution is shown graphically in Fig. 6–43c.

200(103) MPa
———–———

25(103) MPa

300 mm  7856 mm2(400 mm � h�) � 0

(300 mm)(120.90 mm)3 � 300 mm(120.90 mm)                   � 7856 mm2(400 mm � 120.90 mm)2120.9 mm
————

2( )2

60 kN · m (1000 mm/m)(1000 N/kN)(400 mm � 120.9 mm)
–—————————————————————

788.67 � 106 mm4

60 kN · m (1000 mm/m)(120.90 mm)(1000 N/kN)
–—————————————————

788.67 � 106 mm4

200(103) MPa
——–————

25(103) MPa( )



E X A M P L E 6.24

A steel bar having a rectangular cross section is shaped into a
circular arc as shown in Fig. 6–45a. If the allowable normal stress is
�allow � 140 MPa, determine the maximum bending moment M that
can be applied to the bar. What would this moment be if the bar was
straight?

M

O�

ri = 90 mm

dr

20 mm

20 mm

r

(a)

ro = 110 mm

M

Fig. 6–45

Solution

Internal Moment. Since M tends to increase the bar’s radius of
curvature, it is positive.

Section Properties. The location of the neutral axis is determined
using Eq. 6–23. From Fig. 6–45a, we have

This same result can of course be obtained directly from Table 6–2.
Thus,

R =
A

�
A

dA
r

=
12 in.212 in.2
0.40134 in.

= 9.9666 in.

�
A

dA
r

= �
11 in.

9 in.

 

12 in.2 dr

r
= 12 in.2 ln r `

9 in.

11 in.

= 0.40134 in.

Continued

(20 mm)(20 mm)
—————–——

4.0134 mm
� 99.666 mm

110 mm

90 mm

(20 mm) dr
—————

r
� (20 mm) ln r            � 4.0134 mm|110 mm

90 mm



Fig. 6–45b

It should be noted that throughout the above calculations, R must be
determined to several significant figures to ensure that is
accurate to at least three significant figures.

It is unknown if the normal stress reaches its maximum at the top or
at the bottom of the bar, and so we must compute the moment M for
each case separately. Since the normal stress at the bar’s top is
compressive, � � �140 MPa,

M � 199094 N • mm � 0.199 kN • m
Likewise, at the bottom of the bar the normal stress will be tensile, so
� � �140 MPa. Therefore,

M � 174153 N • mm � 0.174 kN • m Ans.

By comparison, the maximum moment that can be applied is 
0.174 kN • m and so maximum normal stress occurs at the bottom of the
bar. The compressive stress at the top of the bar is then

� 122.5 N/mm2

The stress distribution is shown in Fig. 6–45b.
If the bar was straight, then

M � 186666.7 N • mm � 0.187 kN • m Ans.

This represents an error of about 7% from the more exact value
determined above.

 20 kip>in2 =
M11 in.2

1
1212 in.212 in.23

 s =
Mc

I

 s =
24.9 kip # in.19.9666 in. - 11 in.2

12 in.212 in.2111 in.2110 in. - 9.9666 in.2

 20 kip>in2 =
M19.9666 in. - 9 in.2

12 in.212 in.219 in.2110 in. - 9.9666 in.2

 s =
M1R - ri2
Ari1r - R2

 -20 kip>in2 =
M19.9666 in. - 11 in.2

12 in.212 in.2111 in.2110 in. - 9.9666 in.2

 s =
M1R - ro2
Aro1r - R2

1r - R2

122.5 MPa

140 MPaM

(b)

�140 N/mm2 �
M(99.666 mm � 110 mm)

——————————————————————
(20 mm)(20 mm)(110 mm)(100 mm � 99.666 mm)

140 N/mm2 �
M(99.666 mm � 90 mm)

——————————————————————
(20 mm)(20 mm)(90 mm)(100 mm � 99.666 mm)

� �
174153 N • mm(99.666 mm � 110 mm)

——————————————————————
(20 mm)(20 mm)(110 mm)(100 mm � 99.666 mm)

140 N/mm2 �
M(10 mm)

—————————
(20 mm)(20 mm)31—

12



E X A M P L E 6.25

The curved bar has a cross-sectional area shown in Fig. 6–46a. If it is
subjected to bending moments of determine the maximum
normal stress developed in the bar.

4 kN # m,

4 kN·m

O ′
4 kN·m

200 mm

250 mm

B

A

200 mm –
r

50 mm

30 mm

50 mm

(a)

280 mm

Fig. 6–46

Solution

Internal Moment. Each section of the bar is subjected to the same
resultant internal moment of Since this moment tends 
to decrease the bar’s radius of curvature, it is negative. Thus,

Section Properties. Here we will consider the cross section to be
composed of a rectangle and triangle. The total cross-sectional area is

The location of the centroid is determined with reference to the center
of curvature, point Fig. 6–46a.

 = 0.23308 m

 =
[0.225 m]10.05 m210.05 m2 + [0.260 m]1

210.050 m210.030 m2
3.250110-32 m2

 r =
© r
'

A

©A

O¿,

©A = 10.05 m22 +
1
2

 10.05 m210.03 m2 = 3.250110-32 m2

M = -4 kN # m.

4 kN # m.

Continued



Fig. 6–46b

4 kN�m

B

A

(b)

129 MPa

116 MPa

We can compute for each part using Table 6–2. For the rectangle,

And for the triangle,

Thus the location of the neutral axis is determined from

Note that as expected. Also, the calculations were performed with
sufficient accuracy so that (–r � R) � 0.23308 m � 0.23142 m � 0.00166 m
is now accurate to three significant figures.

Normal Stress. The maximum normal stress occurs either at A or B.
Applying the curved-beam formula to calculate the normal stress at B,

we have

At point A, and the normal stress is

Ans.

By comparison, the maximum normal stress is at A. A two dimensional
representation of the stress distribution is shown in Fig. 6–46b.

 = 129 MPa

 sA =
M1R - rA2
ArA1r - R2 =

1-4 kN # m210.23142 m - 0.280 m2
3.2500110-32 m210.280 m20.00166 m2

rA = 0.280 m

 = -116 MPa

 sB =
M1R - rB2
ArB1r - R2 =

1-4 kN # m210.23142 m - 0.200 m2
3.2500110-32 m210.200 m210.00166 m2

rB = 0.200 m,

R 6 r

R =
©A

© �
A

dA>r
=

3.250110-32 m2

0.011157 m + 0.0028867 m
= 0.23142 m

�
A

dA
r

=
10.05 m210.280 m2
10.280 m - 0.250 m2  a ln 

0.280 m
0.250 m

b - 0.05 m = 0.0028867 m

�
A

dA
r

= 0.05 ma ln 
0.250 m
0.200 m

b = 0.011157 m

�AdA>r



Fig. 6–51c

Fig. 6–51b

E X A M P L E 6.26

The transition in the cross-sectional area of the steel bar is achieved
using shoulder fillets as shown in Fig. 6–51a. If the bar is subjected to
a bending moment of determine the maximum normal stress
developed in the steel. The yield stress is sY = 500 MPa.

5 kN # m,

(b)

340 MPa

340 MPa

5 kN�m

5 kN�m

5 kN�m

(c)

234 MPa

234 MPa

5 kN�m

Solution
The moment creates the largest stress in the bar at the base of the
fillet, where the cross-sectional area is smallest. The stress-
concentration factor can be determined by using Fig. 6–48. From the
geometry of the bar, we have 
Thus,

These values give 
Applying Eq. 6–26, we have

This result indicates that the steel remains elastic since the stress is
below the yield stress (500 MPa).

The normal-stress distribution is nonlinear and is shown in 
Fig. 6–51b. Realize, however, that by Saint-Venant’s principle, Sec. 4.1,
these localized stresses smooth out and become linear when one moves
(approximately) a distance of 80 mm or more to the right of the
transition. In this case, the flexure formula gives Fig.
6–51c.Also note that the choice of a larger-radius fillet will significantly
reduce since as r increases in Fig. 6–48, K will decrease.smax,

smax = 234 MPa,

smax = K 

Mc

I
= 11.452 

15 kN # m210.04 m2
[ 1
1210.020 m210.08 m23] = 340 MPa

K = 1.45.

r

h
=

16 mm
80 mm

= 0.2 w
h

=
120 mm
80 mm

= 1.5

w = 120 mm.h = 80 mm,r = 16 mm,

Fig. 6–51

120 mm
r = 16 mm

80 mm

20 mm
(a)

5 kN·m

5 kN·m



Fig. 6–56b

Fig. 6–56a

E X A M P L E 6.27

The steel wide-flange beam has the dimensions shown in Fig. 6–56a. If it is
made of an elastic perfectly plastic material having a tensile and compressive
yield stress of �Y � 250 MPa, determine the shape factor for the beam.
Solution
In order to determine the shape factor, it is first necessary to compute the
maximum elastic moment and the plastic moment 
Maximum Elastic Moment. The normal-stress distribution for the
maximum elastic moment is shown in Fig. 6–56b. The moment of inertia
about the neutral axis is

————
� 82.44 � 106 mm4

Applying the flexure formula, we have

MY � 164.88 kN · m

Plastic Moment. The plastic moment causes the steel over the entire
cross section of the beam to yield, so that the normal-stress distribution
looks like that shown in Fig. 6–56c. Due to symmetry of the cross-sectional
area and since the tension and compression stress–strain diagrams are the
same, the neutral axis passes through the centroid of the cross section. In
order to determine the plastic moment, the stress distribution is divided
into four composite rectangular “blocks,” and the force produced by each
“block” is equal to the volume of the block. Therefore, we have

C1 � T1 � 250 N/mm2(12.5 mm)(112.5 mm) � 351.56 kN

C2 � T2 � 250 N/mm2(12.5 mm)(200 mm) � 625 kN

These forces act through the centroid of the volume for each block.
Computing the moments of these forces about the neutral axis, we obtain
the plastic moment:
Mp � 2[56.25 mm)(351.56 kN)] � 2[(118.75 mm)(625 kN)] � 188 kN·m

Shape Factor. Applying Eq. 6–33 gives

Ans.

This value indicates that a wide-flange beam provides a very efficient section
for resisting an elastic moment.Most of the moment is developed in the flanges,
i.e., in the top and bottom segments, whereas the web or vertical segment
contributes very little. In this particular case, only 14% additional moment
can be supported by the beam beyond that which can be supported elastically.

k =
Mp

MY
=

1732.5 kip # in.

1519.5 kip # in.
= 1.14

 36 kip>in2 =
MY15 in.2
211.0 in4smax =

Mc

I
;

2 c1
2

 18 in.210.5 in.23 + 8 in.10.5 in.214.75 in.22 d = 211.0 in4

I = c 1
12

 10.5 in.219 in.23 d +

Mp.MY

200 mm

225 mm

12.5 mm

12.5 mm

(a)

12.5 mm

(b)

A

250 MPa

MY

250 MPa

N

(c)

A

T2

T1

C1

C2

250 MPa

250 MPa

N

Mp

Fig. 6–56

188 kN · m
——————
164.88 kN · m

250 N/mm2 �
MY (125 mm)

——————–—
82.44 � 106 mm4

[ �(12.5 mm)(225 mm)3 ]
2       (200 mm)(12.5 mm)3 � 200 mm(12.5 mm)(118.75 mm)2[ ]1

—
12 



Fig. 6–57b

E X A M P L E 6.28

A T-beam has the dimensions shown in Fig. 6–57a. If it is made of an
elastic perfectly plastic material having a tensile and compressive yield
stress of determine the plastic moment that can be
resisted by the beam.

sY = 250 MPa,

120 mm

15 mm

15 mm

(a)

100 mm

Fig. 6–57
(b)

15 mm

Mp

C2

C1

250 MPa

d

N

A

100 mm

T

15 mm
(120 mm –    ) d   

Solution

The “plastic” stress distribution acting over the beam’s cross-sectional area
is shown in Fig. 6–57b. In this case the cross section is not symmetric with
respect to a horizontal axis, and consequently, the neutral axis will not pass
through the centroid of the cross section. To determine the location of the
neutral axis, d, we require the stress distribution to produce a zero resultant
force on the cross section. Assuming that we have

Using this result, the forces acting on each segment are

Hence, the resultant plastic moment about the neutral axis is

 C2 = 250 MN>m210.015 m210.100 m2 = 375 kN

 C1 = 250 MN>m210.015 m210.010 m2 = 37.5 kN

 T = 250 MN>m210.015 m210.110 m2 = 412.5 kN

d = 0.110 m 6 0.120 m OK

- 250 MPa10.015 m210.100 m2 = 0

250 MPa10.015 m21d2 - 250 MPa10.015 m210.120 m - d2
T - C1 - C2 = 0�

A

s dA = 0;

d … 120 mm,

 Mp = 412.5 kNa0.110 m
2

b + 37.5 kNa0.01 m
2
b + 375 kNa0.01 m +

0.015 m
2

b
Ans. Mp = 29.4 kN # m



Fig. 6–58a

E X A M P L E 6.29

The beam in Fig. 6–58a is made of an alloy of titanium that has a
stress–strain diagram that can in part be approximated by two straight
lines. If the material behavior is the same in both tension and
compression, determine the bending moment that can be applied to the
beam that will cause the material at the top and bottom of the beam to
be subjected to a strain of 0.050 mm/mm.

0.05

0.05

Strain distribution

(b)

1.5 cm

0.010

0.010

= 0.3 cmy

Fig. 6–58

3 cm

(a)

0.010 0.050

1050

1330
= 

10
5(

10
  )

σ

∋

3

(MPa)σ

(mm/mm)2 cm

M

= 7000   + 980

σ

∋

∋

Solution I
By inspection of the stress–strain diagram, the material is said to
exhibit “elastic-plastic behavior with strain hardening.” Since the
cross section is symmetric and the tension–compression diagrams
are the same, the neutral axis must pass through the centroid of the
cross section. The strain distribution, which is always linear, is shown
in Fig. 6–58b. In particular, the point where maximum elastic strain
(0.010 mm/mm) occurs has been determined by proportion, such that
0.05/1.5 cm � 0.010/y or y � 0.3 cm � 3 mm.

The corresponding normal-stress distribution acting over the cross
section is shown in Fig. 6–58c. The moment produced by this
distribution can be calculated by finding the “volume” of the stress
blocks. To do so, we will subdivide this distribution into two triangular
blocks and a rectangular block in both the tension and compression
regions, Fig. 6–58d. Since the beam is 2 cm wide, the resultants and
their locations are determined as follows:

s–P

Continued



Fig. 6–58

Fig. 6–58d

Fig. 6–58c

(e)

N

A

σ

2 cm

y dy

The moment produced by this normal-stress distribution about the
neutral axis is therefore

M � 2 [33.6 kN (110 mm) � 252 kN (9 mm) � 31.5 kN (2 mm)]

� 5401.2 kN· mm � 5.40 kN · m Ans.

Solution II

Rather than using the above semigraphical technique, it is also possible
to compute the moment analytically. To do this, we must express the
stress distribution in Fig. 6–58c as a function of position y along the beam.
Note that has been given in Fig. 6–58a. Also, from Fig. 6–58b,
the normal strain can be determined as a function of position y by
proportional triangles; i.e.,

Substituting this into the functions shown in Fig. 6–58a gives

From Fig. 6–58e, the moment caused by acting on the area strip
is

Using Eqs. 1 and 2, the moment for the entire cross section is thus

� 5401(103) N · mm � 5.40 kN · m Ans.

 M = 2 c2�
0.3

0

 500y2 dy + 2�
1.5

0.3

133.3y2 + 140y2 dy d

dM = y1s dA2 = ys12 dy2dA = 2 dy
s

112
122

0 … y … 0.3 in.
0.3 in. … y … 1.5 in.

s = 500y

s = 33.33y + 140

s - P

P =
0.05
1.5

 y 0 … y … 1.5 in.

s = f1P2

 y3 =
2
3

 10.3 in.2 = 0.2 in.

 T3 = C3 =
1
2

 10.3 in.21150 ksi212 in.2 = 45 kip

 y2 = 0.3 in. +
1
2

 11.2 in.2 = 0.90 in.

 T2 = C2 = 11.2 in.21150 kip>in2212 in.2 = 360 kip

 y1 = 0.3 in. +
2
3

 11.2 in.2 = 1.10 in.

 T1 = C1 =
1
2

 11.2 in.2140 kip>in2212 in.2 = 48 kip

1.5 cm

= 0.3 cmy

Stress distribution

(c)

1050 MPa

1050 MPa

1330 MPa

1330 MPa

(d)

C3
T3

T 2
T1

y2

C 2

C1

1050 MPa
280 MPa

y1

y3

0.2 cm

0.3 cm

(12 mm)(280 N/mm2)(20 mm) � 33600 N � 33.6 kN

cm

(12 mm)(1050 N/mm2)(20 mm) � 25200 N � 252 kN

(1.2 cm) � 1.10 cm � 11.0 mm

cm

(3 mm)(1050 N/mm2)(20 mm) � 31500 N � 31.5 kN

(1.2 cm) � 0.90 cm � 9 mm

(0.3 cm) � 0.2 cm � 2 mm

cm � 15 mm

23.33y � 980

350y cm � 3 mm
cm � 15 mm3 cm

(20 dy)

M � 2   20 350y2 dy � 20[ 3

3

15

(23.33y2 dy � 980y) dy ]



Fig. 6–60c
Fig. 6–60b

Fig. 6–60a

E X A M P L E 6.30

The steel wide-flange beam shown in Fig. 6–60a is subjected to a fully
plastic moment of If this moment is removed, determine the
residual-stress distribution in the beam. The material is elastic perfectly
plastic and has a yield stress of �Y � 250 MPa.

Solution
The normal-stress distribution in the beam caused by is shown in
Fig. 6–60b.When is removed, the material responds elastically. Removal
of requires applying in its reverse direction and therefore leads to
an assumed elastic stress distribution as shown in Fig. 6–60c.The modulus of
rupture is computed from the flexure formula. Using MP � 188 kN · m
and I � 82.44 � 106 mm4 from Example 6.27, we have

�allow � ———————————

� 285.1 N/mm2 � 285.1 MPa 

As expected,
Superposition of the stresses gives the residual-stress distribution

shown in Fig. 6–60d. Note that the point of zero normal stress was
determined by proportion; i.e., from Fig. 6–60b and 6–60c, we require
that

y � 109.61 mm

 
41.1 ksi

5 in.
=

36 kis
y

sr 6 2sY.

smax =
Mc

I
;

sr

MpMp

Mp

Mp

Mp.

200 mm

225 mm

12.5 mm

12.5 mm

(a)

12.5 mm

Plastic moment applied
(profile view)

250 MPa

(b)

Mp
125 mm

125 mm

250 MPa

y M

σr = 285.1 MPa

σr = 285.1 MPa

p125 mm

125 mm

Plastic moment reversed
(profile view)

(c)

Residual stress distribution

35.1 MPa

(d)

35.1 MPa

250 MPa
109.61 mm

109.61 mm

Fig. 6–60

(188 � 106 N · mm)(125 mm)
—————————————

82.44 � 106 mm4

281.51 MPa
—————

125 mm

2501 MPa
—–———

y


