
E X A M P L E 5.1

The stress distribution in a solid shaft has been plotted along three
arbitrary radial lines as shown in Fig. 5–10a. Determine the resultant
internal torque at the section.

56 MPa

56 MPa

50 mm

(b)

ρd

(a)

50 mm

ρ
56 MPa56 MPa

Fig. 5–10

Solution I
The polar moment of inertia for the cross-sectional area is

J � (50 mm)4 � 9.82 � 106 mm4

Applying the torsion formula, with �max � 56 MPa � 56 N/mm2, Fig. 5–10a,
we have

56 N/mm2 � ———————

T � 11.0 kN·m Ans.
Solution II
The same result can be obtained by finding the torque produced by the
stress distribution about the centroidal axis of the shaft. First we must
express Using proportional triangles, Fig. 5–10b, we have

� � 1.12� N/mm2

This stress acts on all portions of the differential ring element that has an area
Since the force created by is the torque is

dT � � dF � �(�dA) � �(1.12�)2�� d� � 2.24 ��3 d�

For the entire area over which acts, we require

� 11.0 kN·m Ans.

T = �
2

0

8pr3 dr = 8pa1
4

 r4b `
0

2

= 101 kip # in.

t

dF = t dA,tdA = 2pr dr.

 
t

r
=

8 ksi
2 in.

t = f1r2.

tmax =
Tc

J
;

�
—
2 

T (50 mm)
———————––
(9.82 � 106) mm4

�
—
�

�
56 N/mm2
———–––

50 mm

T � 2.24 ��3 d� � 2.24�� 50

0
� 11.0 � 106 N·mm

50



Fig. 5–11a

E X A M P L E 5.2

The solid shaft of radius c is subjected to a torque T, Fig. 5–11a.
Determine the fraction of T that is resisted by the material contained
within the outer region of the shaft, which has an inner radius of and
outer radius c.

Solution
The stress in the shaft varies linearly, such that Eq. 5–3.
Therefore, the torque on the ring (area) located within the lighter-
shaded region, Fig. 5–11b, is

For the entire lighter-shaded area the torque is

So that

(1)

This torque can be expressed in terms of the applied torque T by
first using the torsion formula to determine the maximum stress in the
shaft. We have

or

Substituting this into Eq. 1 yields

Ans.

Here, approximately 94% of the torque is resisted by the lighter-
shaded region, and the remaining 6% of T (or ) is resisted by the inner
“core” of the shaft, to As a result, the material located
at the outer region of the shaft is highly effective in resisting torque,
which justifies the use of tubular shafts as an efficient means for
transmitting torque, and thereby saves material.

r = c>2.r = 0

1
16

T¿ =
15
16

 T

tmax =
2T

pc3

tmax =
Tc

J
=

Tc1p>22c4

T¿

T¿ =
15p
32

 tmax c3

 =
2ptmax

c
 
1
4

 r4 `
c>2
c

 T¿ =
2ptmax

c �
c

c>2r
3 dr

dT¿ = r1t dA2 = r1r>c2tmax12pr dr2
dT¿

t = 1r>c2tmax,
c>2

(a)

T

cc–
2

c–
2

(b)

c

ρd

ρ    max

Fig. 5–11



Fig. 5–12c

Fig. 5–12b

E X A M P L E 5.3

The shaft shown in Fig. 5–12a is supported by two bearings and is
subjected to three torques. Determine the shear stress developed at
points A and B, located at section a–a of the shaft, Fig. 5–12b.

4250 kN�mm

(b)

3000 kN�mm

T

x

4250 kN�mm

3000 kN�mm

1250 kN�mm
a

a

(a)

Fig. 5–12

Solution

Internal Torque. The bearing reactions on the shaft are zero, provided
the shaft’s weight is neglected. Furthermore, the applied torques satisfy
moment equilibrium about the shaft’s axis.

The internal torque at section a–a will be determined from the free-
body diagram of the left segment, Fig. 5–12b. We have

Section Property. The polar moment of inertia for the shaft is

J � (75 mm)4 � 4.97 � 107 mm4

Shear Stress. Since point A is at � � c � 75 mm,

�B �        �                                       � 1.89 N/mm2 � 1.89 MPa Ans.

Likewise for point B, at � � 15 mm, we have

�B �        �                                       � 0.377 MPa Ans.

The directions of these stresses on each element at A and B, Fig. 5–12c,
are established from the direction of the resultant internal torque T,
shown in Fig. 5–12b. Note carefully how the shear stress acts on the planes
of each of these elements.

T = 12.5 kip # in.42.5 kip # in. - 30 kip # in. - T = 0©Mx = 0;

(c)

z

y

x15 mm75 mm

B

A

1.89 MPa

0.377 MPa

4250 kN·mm � 3000 kN·mm � T � 0    T � 1250 kN·mm

�
—
2 

1250 kN·mm � 15 mm
——————————

4.97 � 107 mm4

T�
—–

J

1250 kN·mm � 75 mm
——————————

4.97 � 107 mm4

Tc
—–

J



Fig. 5–13b

Fig. 5–13a

E X A M P L E 5.4

The pipe shown in Fig. 5–13a has an inner diameter of 80 mm and an
outer diameter of 100 mm. If its end is tightened against the support at
A using a torque wrench at B, determine the shear stress developed in
the material at the inner and outer walls along the central portion of the
pipe when the 80-N forces are applied to the wrench.

Solution

Internal Torque. A section is taken at an intermediate location C along
the pipe’s axis, Fig. 5–13b.The only unknown at the section is the internal
torque T. Force equilibrium and moment equilibrium about the x and z
axes are satisfied. We require

Section Property. The polar moment of inertia for the pipe’s cross-
sectional area is

Shear Stress. For any point lying on the outside surface of the pipe,
we have

Ans.

And for any point located on the inside surface, so that

Ans.

To show how these stresses act at representative points D and E on
the cross-sectional area, we will first view the cross section from the front
of segment CA of the pipe, Fig. 5–13a. On this section, Fig. 5–13c, the
resultant internal torque is equal but opposite to that shown in Fig. 5–13b.
The shear stresses at D and E contribute to this torque and therefore
act on the shaded faces of the elements in the directions shown. As a
consequence, notice how the shear-stress components act on the other
three faces. Furthermore, since the top face of D and the inner face of
E are in stress-free regions taken from the pipe’s outer and inner walls,
no shear stress can exist on these faces or on the other corresponding
faces of the elements.

ti =
Tci
J

=
40 N # m10.04 m2

5.80110-62 m4 = 0.276 MPa

r = ci = 0.04 m,

to =
Tco
J

=
40 N # m10.05 m2

5.80110-62 m4 = 0.345 MPa

r = co = 0.05 m,

J =
p

2
 [10.05 m24 - 10.04 m24] = 5.80110-62 m4

T = 40 N # m
80 N10.3 m2 + 80 N10.2 m2 - T = 0©My = 0;

200 mm

80 N

(a)

B

80 N
C

300 mm

A

300 mm

200 mm

80 N

80 N

(b)

z

x

T y

(c)

= 0.276 MPaE

T

= 0.345 MPaD

D

E

Fig. 5–13



E X A M P L E 5.5

A solid steel shaft AB shown in Fig. 5–14 is to be used to transmit 3750 W
from the motor M to which it is attached. If the shaft rotates at 
and the steel has an allowable shear stress of �allow � 100 MPa, determine the
required diameter of the shaft to the nearest mm.

v = 175 rpm

M

A

B
ω

Fig. 5–14

Solution

The torque on the shaft is determined from Eq. 5–10, that is,
Expressing P in Newton-meters per second and in radians/second,
we have

P � 3750 N·m/s

Thus,

3750 N·m/s � T(18.33) rad/s

T � 204.6 N·m

Applying Eq. 5–12 yields

c � 10.92 mm

Since 2c � 21.84 mm, select a shaft having a diameter of

d � 22 mm Ans.

 c = a 2T
ptallow

b1>3
= a21150.1 ft # lb2112 in.>ft2

p114 500 lb>in22 b1>3
 
J
c

=
p

2
 
c4

c
=
T
tallow

P = Tv;

v =
175 rev

min
 a2p rad

1 rev
b a1 min

60 s
b = 18.33 rad>s

v

P = Tv.

( 2(204.6 N·m)(1000 mm/m)
————————————

�(100 N/mm2) ) 1/3



E X A M P L E 5.6

A tubular shaft, having an inner diameter of 30 mm and an outer diameter
of 42 mm,is to be used to transmit 90 kW of power.Determine the frequency
of rotation of the shaft so that the shear stress will not exceed 50 MPa.

Solution

The maximum torque that can be applied to the shaft is determined from
the torsion formula.

Applying Eq. 5–11, the frequency of rotation is

Ans. f = 26.6 Hz
 9011032 N # m>s = 2pf1538 N # m2 P = 2pfT

 T = 538 N # m
 5011062 N>m2 =

T10.021 m21p>22[10.021 m24 - 10.015 m24]
tmax =

Tc

J



Fig. 5–20c

Fig. 5–20b

Fig. 5–20a2

Fig. 5–20a1

E X A M P L E 5.7

The gears attached to the fixed-end steel shaft are subjected to the torques
shown in Fig. 5–20a. If the shear modulus of elasticity is 80 GPa and the
shaft has a diameter of 14 mm, determine the displacement of the tooth P
on gear A. The shaft turns freely within the bearing at B.

T = 170 N�mDE

(b)

40 N�m

280 N�m

150 N�m

(a)

P

40 N·m

280 N·m

0.4 m

0.3 m

0.5 m

100 mm

A

B

C

D

E

150 N·m

280 N�m

150 N�m

T = 130 N�mCD

T = 150 N�mAC
150 N�m

(c)

T (N�m)

x (m)

150

0

–130

0.4 0.7 1.2

–170

Solution

Internal Torque. By inspection, the torques in segments AC, CD, and DE
are different yet constant throughout each segment. Free-body diagrams of
appropriate segments of the shaft along with the calculated internal torques
are shown in Fig. 5–20b. Using the right-hand rule and the established sign
convention that positive torque is directed away from the sectioned end of
the shaft, we have

These results are also shown on the torque diagram, Fig. 5–20c.

Angle of Twist. The polar moment of inertia for the shaft is

Applying Eq. 5–16 to each segment and adding the results algebraically,
we have

Since the answer is negative, by the right-hand rule the thumb is directed
toward the end E of the shaft, and therefore gear A will rotate as shown
in Fig. 5–20d.

The displacement of tooth P on gear A is

Ans.

Remember that this analysis is valid only if the shear stress does not
exceed the proportional limit of the material.

SP = fA r = 10.212 rad21100 mm2 = 21.2 mm

+
1-170 N # m210.5 m2

3.77110-92 m4[8011092 N>m22] = -0.212 rad

+
1-130 N # m210.3 m2

3.77110-92 m4[8011092 N>m22]
fA = a  

TL

JG
=

1+150 N # m210.4 m2
3.77110-92 m4[8011092 N>m2]

J =
p

2
 10.007 m24 = 3.77110-92 m4

TAC = +150 N # m TCD = -130 N # m TDE = -170 N # m

(d)

φ = 0.212 radA

100 mm

+x

P sP

A

Fig. 5–20



Fig. 5–21a

Fig. 5–21b

A
Fy

T = 45 N�m

Fz

Ey
Ez

(c)

B

= 300 NF 0.150 m

φ = 0.0134 radB

+

Fig. 5–21

E X A M P L E 5.8

The two solid steel shafts shown in Fig. 5–21a are coupled together using
the meshed gears. Determine the angle of twist of end A of shaft AB when
the torque is applied. Take Shaft AB is free to
rotate within bearings E and F, whereas shaft DC is fixed at D. Each shaft
has a diameter of 20 mm.

G = 80 GPa.T = 45 N # m

A

T = 45 N�m

D

E F

(a)

2 m

75 mm

B

150 mm

1.5 m
C

D Dx

Dy

MD   

M( )D z

DzT( ) = 22.5 N�mD x

= 300 N
φC

C

0.075 m

F

(b)

+

( )y

Solution

Internal Torque. Free-body diagrams for each shaft are shown in Fig.
5–21b and 5–21c. Summing moments along the x axis of shaft AB yields the
tangential reaction between the gears of 
Summing moments about the x axis of shaft DC, this force then creates a
torque of on shaft DC.

Angle of Twist. To solve the problem, we will first calculate the rotation
of gear C due to the torque of in shaft DC, Fig. 5–21b. This
angle of twist is

Since the gears at the end of the shaft are in mesh, the rotation of
gear C causes gear B to rotate Fig. 5–21c, where

We will now determine the angle of twist of end A with respect to end
B of shaft AB caused by the torque, Fig. 5–21c. We have

The rotation of end A is therefore determined by adding and 
since both angles are in the same direction, Fig. 5–21c. We have

Ans.fA = fB + fA>B = 0.0134 rad + 0.0716 rad = +0.0850 rad

fA>B,fB

fA>B =
TAB LAB
JG

=
1+45 N # m212 m21p>2210.010 m24[8011092 N>m2]

= +0.0716 rad

45 N # m

 fB = 0.0134 rad
 fB10.15 m2 = 10.0269 rad210.075 m2

fB,
fC

fC =
TLDC
JG

=
1+22.5 N # m211.5 m21p>2210.010 m24[8011092 N>m2]

= +0.0269 rad

22.5 N # m

1TD2x = 300 N10.075 m2 = 22.5 N # m
F = 45 N # m>0.15 m = 300 N.



Fig. 5–22d

Fig. 5–22b

Fig. 5–22a

E X A M P L E 5.9

The 50-mm-diameter solid cast-iron post shown in Fig. 5–22a is buried 
600 mm in soil. If a torque is applied to its top using a rigid wrench,
determine the maximum shear stress in the post and the angle of twist
at its top. Assume that the torque is about to turn the post, and the soil
exerts a uniform torsional resistance of t N·mm/mm along its 600 mm
buried length. G � 40(103) MPa.

Solution

Internal Torque. The internal torque in segment AB of the post is
constant. From the free-body diagram, Fig. 5–22b, we have

TAB � 100 N(300 mm) � 30 � 103 N·mm

The magnitude of the uniform distribution of torque along the buried
segment BC can be determined from equilibrium of the entire post, Fig.
5–22c. Here

100 N(300 mm) � t(600 mm) � 0

t � 50 N·mm

Hence, from a free-body diagram of a section of the post located at the
position x within region BC, Fig. 5–22d, we have

TBC � 50x � 0

TBC � 50x

Maximum Shear Stress. The largest shear stress occurs in region AB,
since the torque is largest there and J is constant for the post. Applying
the torsion formula, we have

�max �          �                                          � 1.22 N/mm2 Ans.

Angle of Twist. The angle of twist at the top can be determined relative
to the bottom of the post, since it is fixed and yet is about to turn. Both
segments AB and BC twist, and so in this case we have

Ans.=
14 400 lb # in21p>2211 in.24550011032 lb>in2 = 0.00167 rad

 =
10 800 lb # in2

JG
+

12.5[12422>2] lb # in2

JG

 =
1300 lb # in.2
JG

+ �
24in.

0

12.5x dx
JG

 fA =
TAB LAB
JG

+ �
LBC

0

 

TBC dx
JG

©Mz = 0;

©Mz = 0

©Mz = 0;

50 mm

900 mm

600 mm

A

(a)

B

C

t

150 mm

150 mm 100 N
100 N

ABT

(b)

150 mm

150 mm 100 N100 N

600 mm

24t

(c)

900 mm

150 mm

150 mm 100 N
100 N

Fig. 5–22

x

t

(d)

BCT

= 50 N�mm/mm

30 � 103 N·mm (25 mm)
——————————––

(�/2)(25 mm)4
TAB

C

—––
J

30 � 106 N·mm2

——————————–——–
(�/2)(25 mm)440(103) N·mm2 � 0.00147 rad

27 � 106 N·mm2

————–——–
JG

	
50[(600)2/2] N·mm2

——————–——–
JG

(30 � 103 N·mm)(900 mm)
—————————–——–

JG
	 � 600

0

50x dx
–——–

JG



Fig. 5–23a

Fig. 5–23b

E X A M P L E 5.10

The tapered shaft shown in Fig. 5–23a is made of a material having a
shear modulus G. Determine the angle of twist of its end B when
subjected to the torque.

Solution

Internal Torque. By inspection or from the free-body diagram of a section
located at the arbitrary position x, Fig. 5–23b, the internal torque is T.

Angle of Twist. Here the polar moment of inertia varies along the
shaft’s axis and therefore we must express it in terms of the coordinate
x. The radius c of the shaft at x can be determined in terms of x by
proportion of the slope of line AB in Fig. 5–23c. We have

Thus, at x,

Applying Eq. 5–14, we have

Performing the integration using an integral table, the result becomes

Rearranging terms yields

Ans.

To partially check this result, note that when then

which is Eq. 5–15.

f =
TL

[1p>22c4]G
=
TL

JG

c1 = c2 = c,

f =
2TL
3pG

 a c2
2 + c1 c2 + c1

2

c1
3c2

3 b

 =
2T
pG

 a L

31c2 - c12 b a 1

c1
3 -

1

c2
3 b

 f = a 2T
pG
b 1

3a c2 - c1
L

b cc2 - xa c2 - c1
L

b d3 

    †
0

L

f = �
L

0

 
T dx

ap
2
b cc2 - xa c2 - c1

L
b d4G =

2T
pG �

L

0

 
dx

cc2 - xa c2 - c1
L

b d4

J1x2 =
p

2
 cc2 - xa c2 - c1

L
b d4

 c = c2 - xa c2 - c1
L

b
 
c2 - c1
L

=
c2 - c
x

x

TT

(b)

c

A

c

Bc1

c2

x
L

(c)

c2 – c1

c2 – c

Fig. 5–23

A

c

c1

c2

x

L

yT

B

(a)

x



Fig. 5–25b

Fig. 5–25a

E X A M P L E 5.11

The solid steel shaft shown in Fig. 5–25a has a diameter of 20 mm. If it is
subjected to the two torques, determine the reactions at the fixed supports
A and B.

(b)

x TB

800 N�m

500 N�m

TA

(c)

T + 500A

TA

TA

TA

TB

TB

500 N�m

Fig. 5–25

(a)

B

0.2 m

1.5 m

0.3 m

C

D

A

800 N·m

500 N·m

Solution

Equilibrium. By inspection of the free-body diagram, Fig. 5–25b, it is
seen that the problem is statically indeterminate since there is only one
available equation of equilibrium, whereas and are unknown. We
require

(1)

Compatibility. Since the ends of the shaft are fixed, the angle of twist
of one end of the shaft with respect to the other must be zero. Hence,
the compatibility equation can be written as

This condition can be expressed in terms of the unknown torques by
using the load–displacement relationship, Here there are
three regions of the shaft where the internal torque is constant, BC, CD,
and DA. On the free-body diagrams in Fig. 5–25c we have shown the
internal torques acting on segments of the shaft which are sectioned in
each of these regions. Using the sign convention established in Sec. 5.4,
we have

or
(2)

Solving Eqs. 1 and 2 yields

Ans.

The negative sign indicates that acts in the opposite direction of that
shown in Fig. 5–25b.

TA

TA = -345 N # m TB = 645 N # m

1.8TA - 0.2TB = -750

-TB10.2 m2
JG

+
1TA + 500 N # m211.5 m2

JG
+
TA10.3 m2
JG

= 0

f = TL>JG.

fA>B = 0

-TB + 800 N # m - 500 N # m - TA = 0©Mx = 0;

TBTA



Fig. 5–26b

E X A M P L E 5.12

The shaft shown in Fig. 5–26a is made from a steel tube, which is bonded
to a brass core. If a torque of T � 250 N·m is applied at its end, plot the
shear-stress distribution along a radial line of its cross-sectional area.
Take Gst � 80 GPa, Gbr � 36 GPa.

(a)

1.2 m

B

A
T = 250 N�m

20 mm

10 mm

Fig. 5–26

(b)
x

250 N�m

φ

Tbr

Tst

Solution

Equilibrium. A free-body diagram of the shaft is shown in Fig. 5–26b.
The reaction at the wall has been represented by the unknown amount
of torque resisted by the steel, and by the brass, Equilibrium
requires

�Tst � Tbr 	 250 N·m � 0 (1)

Compatibility. We require the angle of twist of end A to be the same
for both the steel and brass since they are bonded together. Thus,

Applying the load–displacement relationship, we have

Tst � 33.33 Tbr (2)

Tbr L1p>2210.5 in.245.2011032 kip>in2

Tst L1p>22[11 in.24 - 10.5 in.24]11.411032 kip>in2 =

f = TL>JG,

f = fst = fbr

Tbr.Tst,

TbrL—————————————
(�/2)(10 mm)436(103) N/mm2

TstL———————————————————
(�/2)[(20 mm)4 � (10 mm)4]80(103) N/mm2 �



Fig. 5–26c

Solving Eqs. 1 and 2, we get

Tst � 242.72 N � m

Tbr � 7.28 N � m

These torques act throughout the entire length of the shaft, since no
external torques act at intermediate points along the shaft’s axis. The shear
stress in the brass core varies from zero at its center to a maximum at the
interface where it contacts the steel tube. Using the torsion formula,

(�br)max � —————————————— � 4.63 N/mm2 � 4.63 MPa

For the steel, the minimum shear stress is also at this interface,

(�st)min � ————————————–— � 10.30 N/mm2 � 10.30 MPa

and the maximum shear stress is at the outer surface,

(�st)max � ———————————–—–— � 20.60 N/mm2 � 20.60 MPa

The results are plotted in Fig. 5–26c. Note the discontinuity of shear
stress at the brass and steel interface. This is to be expected, since the
materials have different moduli of rigidity; i.e., steel is stiffer than brass

and thus it carries more shear stress at the interface.
Although the shear stress is discontinuous here, the shear strain is not.
Rather, the shear strain is the same for both the brass and the steel. This
can be shown by using Hooke’s law, At the interface, Fig. 5–26d,
the shear strain is


 � — � ——————–— � 0.1286(10�3) rad

g = t>G.

1Gst 7 Gbr2

Shear–stress distribution

(c)

20.60 MPa
10.30 MPa

20 mm

10 mm

4.63 MPa

Shear–strain distribution

(d)

maxγ

0.1286(10–3) rad

7.28 N � mm � (103) mm/m � 10 mm
———————————————

(�/2)(10 mm)4

242.72 N � m � 103 mm/m � 10 mm
—————————————–—

(�/2)[(20 mm)4 � (10 mm)4]

242.72 N � m � 103 mm/m � 20 mm
————————–—————–—

(�/2)[(20 mm)4 � (10 mm)4]

4.63 N/mm2
—————–—
36(103) N/mm2

�
—
G



E X A M P L E 5.13

The 6061-T6 aluminum shaft shown in Fig. 5–29 has a cross-sectional
area in the shape of an equilateral triangle. Determine the largest
torque T that can be applied to the end of the shaft if the allowable
shear stress is �allow � 56 MPa and the angle of twist at its end is
restricted to How much torque can be applied to a
shaft of circular cross section made from the same amount of
material? Gal � 26 GPa.

Solution
By inspection, the resultant internal torque at any cross section 
along the shaft’s axis is also T. Using the formulas for and in 
Table 5–1, we require

56 N/mm2 � ————–

T � 179.2(103) N·mm � 179.2 N·m

Also,

T � 24.12(103) N·mm � 24.12 N·m Ans.

By comparison, the torque is limited due to the angle of twist.

Circular Cross Section. If the same amount of aluminum is to be
used in making the same length of shaft having a circular cross section,
then the radius of the cross section can be calculated. We have

c � 14.850 mm

The limitations of stress and angle of twist then require

56 N/mm2 � ————–————

T � 288.06(103) N·mm � 288.06 N·m

T � 33.10(103) N·mm � 33.10 N·m Ans.

Again, the angle of twist limits the applied torque.
Comparing this result (33.10 N·m) with that given above (24.12 N·m), it

is seen that a shaft of circular cross section can support 37% more torque
than the one having a triangular cross section.

0.02 rad =
T14 ft2112 in.>ft21p>2210.557 in.24[3.711062 lb>in2]

fallow =
TL

JGal
;

tallow =
Tc

J
;

pc2 =
1
2

 11.5 in.211.5 sin 60°2Acircle = Atriangle;

 0.02 rad =
46T14 ft2112 in.>ft211.5 in.24[3.711062 lb>in2]

fallow =
46TL

a4Gal
;

tallow =
20T

a3 ;

ftmax

fallow = 0.02 rad.

60°

40 mm

1.2 m

T

Fig. 5–29

20T
—–———
(40 mm)3

46T(1.2 m)(103) mm/m
—–——————–———–
(40 mm)4[26(103) N/mm2]

T(14.850 mm)
—––—–—————
(�/2)(14.850 mm)4

T(1.2 m)(103) mm/m
—–——————–———–———–
(�/2)(14.85 mm)4[26(103) N/mm2]

(40 mm) (40 sin 60°)



Fig. 5–31a

E X A M P L E 5.14

Calculate the average shear stress in a thin-walled tube having a circular
cross section of mean radius and thickness t, which is subjected to a
torque T, Fig. 5–31a. Also, what is the relative angle of twist if the tube
has a length L?

Solution

Average Shear Stress. The mean area for the tube is 
Applying Eq. 5–18 gives

Ans.

We can check the validity of this result by applying the torsion formula.
In this case, using Eq. 5–9, we have

Since and 

so that Ans.

which agrees with the previous result.
The average shear-stress distribution acting throughout the tube’s cross

section is shown in Fig. 5–31b. Also shown is the shear-stress distribution
acting on a radial line as calculated using the torsion formula. Notice
how each acts in a direction such that it contributes to the resultant
torque T at the section.As the tube’s thickness decreases, the shear stress
throughout the tube becomes more uniform.

Angle of Twist. Applying Eq. 5–20, we have

The integral represents the length around the centerline boundary, which
is Substituting, the final result is

Ans.

Show that one obtains this same result using Eq. 5–15.

f =
TL

2prm
3 Gt

2prm.

f =
TL

4Am
2 GC

ds

t
=

TL

41prm2 22GtCds

tavg

tavg =
Trm
J

=
Trm

2prm
3 t

=
T

2ptrm
2

J =
p

2
 12rm2 212rm2t = 2prm

3 tt = ro - ri,rm L ro L ri

 =
p

2
 1ro2 + ri221ro + ri21ro - ri2

 =
p

2
 1ro2 + ri221ro2 - ri22

 J =
p

2
 1ro4 - ri42

tavg =
T

2tAm
=

T

2ptrm
2

Am = prm2 .

rm

t

T
r

L

m

(a)

T

T

max

Actual shear–stress
distribution

(torsion formula)

Average shear–stress
distribution

(thin-wall approximation)

a  gv

      



a  gv

(b)

mr

Fig. 5–31



Fig. 5–32d

Fig. 5–32c

Fig. 5–32b

Fig. 5–32a

E X A M P L E 5.15

The tube is made of C86100 bronze and has a rectangular cross section
as shown in Fig. 5–32a. If it is subjected to the two torques, determine
the average shear stress in the tube at points A and B. Also, what is the
angle of twist of end C? The tube is fixed at E.

B

A

60 N�m

25 N�m

35 N�m

(b)

57 mm

35 mm

A m

(d)

(e)

2.92 MPa

1.75 MPa

B

A

Fig. 5–32

0.5 m

1.5 m

25 N�m

60 N�m

C

D

B

A
5 mm

3 mm

3 mm

60 mm

40 mm (a)

E

Solution

Average Shear Stress. If the tube is sectioned through points A and B,
the resulting free-body diagram is shown in Fig. 5–32b. The internal
torque is As shown in Fig. 5–32d, the area is

Applying Eq. 5–18 for point A, so that

Ans.

And for point B, and therefore

Ans.

These results are shown on elements of material located at points A
and B, Fig. 5–32e. Note carefully how the torque in Fig. 5–32b
creates these stresses on the color-shaded faces of each element.

Angle of Twist. From the free-body diagrams in Fig. 5–32b and 5–32c,
the internal torques in regions DE and CD are and 
respectively. Following the sign convention outlined in Sec. 5.4, these
torques are both positive. Thus, Eq. 5–20 becomes

Ans. = 6.29110-32 rad

 +
35 N # m11.5 m2

410.00200 m22213811092 N>m22  c2a57 mm
5 mm

b + 2a35 mm
3 mm

b d
 =

60 N # m10.5 m2
410.00200 m22213811092 N>m22  c2a57 mm

5 mm
b + 2a35 mm

3 mm
b d

 f = a  
TL

4Am
2 GC

ds

t

60 N # m,35 N # m

35-N # m

tB =
T

2tAm
=

35 N # m
210.003 m210.00200 m22 = 2.92 MPa

tB = 3 mm,

tA =
T

2tAm
=

35 N # m
210.005 m210.00200 m22 = 1.75 MPa

tA = 5 mm,

Am = 10.035 m210.057 m2 = 0.00200 m2

Am35 N # m.
60 N�m

60 N�m

(c)



Fig. 5–33b

Fig. 5–33a

E X A M P L E 5.16

A square aluminum tube has the dimensions shown in Fig. 5–33a.
Determine the average shear stress in the tube at point A if it is subjected
to a torque of 85 N·m.Also compute the angle of twist due to this loading.
Take Gal � 26 GPa.

50 mm
Am

50 mm

(b)

(c)

1.7 MPa
A

Fig. 5–33

1.5 mm

85 N·m

A

60 mm

60 mm

10 mm
(a)

10 mm

Solution

Average Shear Stress. By inspection, the internal resultant torque at the
cross section where point A is located is T � 85 N·m. From Fig. 5–33b,
the area shown shaded, is

Am � (50 mm)(50 mm) � 2500 mm2

Applying Eq. 5–18,

Ans.

Since t is constant except at the corners, the average shear stress is the same
at all points on the cross section. It is shown acting on an element located
at point A in Fig. 5–33c. Note that acts upward on the color-shaded face,
since it contributes to the internal resultant torque T at the section.

Angle of Twist. The angle of twist caused by T is determined from 
Eq. 5–20; i.e.,

Here the integral represents the length around the centerline boundary
of the tube, Fig. 5–33b. Thus,

� � 0.196(10�4) mm�1[4(50 mm)] � 3.92(10�3) rad Ans.

 = 0.206110-32 in-1

Cds

 f =
TL

4Am
2 GC

ds

t
=

85 lb # ft112 in.>ft215 ft2112 in.>ft2
416.25 in222[3.8011062 lb>in2] C

ds10.5 in.2

tavg

tavg =
T

2tAm
=

85 lb # ft112 in.>ft2
210.5 in.216.25 in22 = 163 psi

Am,

� 0.196(10�4) mm�1

ds
—–——
(10 mm)B85 N·m (103 mm/m)(1.5 m)(103 mm/m)

———————————–——————
4(2500 mm2)2[26(103) N/mm2]

� 1.7 N/mm285 N·m (103) mm/m
————————–—
2(10 mm)(2500 mm2)



Fig. 5–34a

E X A M P L E 5.17

A thin tube is made from three 5-mm-thick A-36 steel plates such that
it has a cross section that is triangular as shown in Fig. 5–34a. Determine
the maximum torque T to which it can be subjected, if the allowable
shear stress is and the tube is restricted to twist no more
than f = 2110-32 rad.

tallow = 90 MPa

60°

(b)

Am

200 mm

Fig. 5–34

T

3 m

T
200 mm

200 mm

200 mm

(a)

Solution
The area is shown shaded in Fig. 5–34b. It is

The greatest average shear stress occurs at points where the tube’s
thickness is smallest, which is along the sides and not at the corners.
Applying Eq. 5–18, with yields

Also, from Eq. 5–20, we have

The integral represents the sum of the dimensions along the three sides
of the center-line boundary. Thus,

Ans.

By comparison, the application of torque is restricted due to the angle
of twist.

 T = 500 N # m
 300.0 = T[310.20 m2]

300.0 = TCds
0.002 rad =

T13 m2
4117.32110-32 m22[7511092 N>m2]C

ds10.005 m2
f =

TL

4Am
2 GC

ds

t

 T = 15.6 kN # m
 9011062 N>m2 =

T

210.005 m2117.32110-32 m22tavg =
T

2tAm
;

t = 0.005 m,

 = 17.3211032 mm2110-6 m2>mm22 = 17.32110-32 m2

 Am =
1
2

 1200 mm21200 mm sin 60°2
Am



Fig. 5–37c

Fig. 5–37b

E X A M P L E 5.18

The stepped shaft shown in Fig. 5–37a is supported by bearings at A and B.
Determine the maximum stress in the shaft due to the applied torques. The
fillet at the junction of each shaft has a radius of r = 6 mm.

30 N�m
=30 N�mT

(b)

= 3.10 MPa max

Shear–stress
distribution
predicted by

torsion formula

Actual shear–stress
distribution caused

by stress concentration

(c)

A

B

30 N·m

30 N·m

60 N·m

20 mm

40 mm

(a)

Fig. 5–37

Solution

Internal Torque. By inspection, moment equilibrium about the axis of
the shaft is satisfied. Since the maximum shear stress occurs at the rooted
ends of the smaller diameter shafts, the internal torque can
be found there by applying the method of sections, Fig. 5–37b.

Maximum Shear Stress. The stress-concentration factor can be
determined by using Fig. 5–36. From the shaft geometry, we have

Thus, the value of is obtained.
Applying Eq. 5–21, we have

Ans.

From experimental evidence, the actual stress distribution along a radial
line of the cross section at the critical section looks similar to that shown
in Fig. 5–37c. Notice how this compares with the linear stress distribution
found from the torsion formula.

tmax = 1.3 c30 N # m10.020 m21p>2210.020 m24 d = 3.10 MPatmax = K Tc
J

;

K = 1.3

 
r

d
=

6 mm
2120 mm2 = 0.15

 
D

d
=

2140 mm2
2120 mm2 = 2

130 N # m2



Fig. 5–42a

Fig. 5–42c

E X A M P L E 5.19

The tubular shaft in Fig. 5–42a is made of an aluminum alloy that is
assumed to have an elastic-plastic diagram as shown. Determine (a)
the maximum torque that can be applied to the shaft without causing
the material to yield, (b) the maximum torque or plastic torque that can
be applied to the shaft. What should the minimum shear strain at the
outer radius be in order to develop a plastic torque?

Solution

Maximum Elastic Torque. We require the shear stress at the outer fiber
to be 20 MPa. Using the torsion formula, we have

TY � 3.42 kN � m Ans.

The shear-stress and shear-strain distributions for this case are shown
in Fig. 5–42b. The values at the tube’s inner wall are obtained by
proportion.

Plastic Torque. The shear-stress distribution in this case is shown in
Fig. 5–42c. Application of Eq. 5–23 requires We have

Ans.

For this tube represents a 20% increase in torque capacity compared
with the elastic torque 

Outer Radius Shear Strain. The tube becomes fully plastic when the
shear strain at the inner wall becomes as shown in 
Fig. 5–42c. Since the shear strain remains linear over the cross section,
the plastic strain at the outer fibers of the tube in Fig. 5–42c is determined
by proportion;

Ans. go = 0.477110-32 rad

 
go

50 mm
=

0.286110-32 rad

30 mm

0.286110-32 rad,

TY.
Tp

= 4.10 kN # m
Tp = 2p�

0.05 m

0.03 m

[2011062 N>m2]r2 dr = 125.6611062 
1
3

 r3 `
0.03 m

0.05m

t = tY.

2011062 N>m2 =
TY10.05 m21p>22[10.05 m24 - 10.03 m24]tY =

TY c

J
;

t–g

50 mm

30 mm

T

20

γ

(a)

(MPa)

0.286 (10    )–3
(rad)

(b)

Elastic shear–stress distribution

Elastic shear–strain distribution

20 MPa

12 MPa

0.286 (10    ) rad–3

0.172 (10    ) rad–3

50 mm

30 mm

Fig. 5–42

(c)
Plastic shear–stress distribution

20 MPa

Initial plastic shear–strain distribution

0.286 (10    ) rad–3

0.477 (10    ) rad–3



Fig. 5–43b

Fig. 5–43a

E X A M P L E 5.20

A solid circular shaft has a radius of 20 mm and length of 1.5 m. The
material has an elastic-plastic diagram as shown in Fig. 5–43a.
Determine the torque needed to twist the shaft f = 0.6 rad.

t–g

Yρ

Shear–strain distribution

(b)

Y

= 0.008 radγ

γ

max

= 0.0016 rad

20 mm

(c)

Shear–stress distribution

20 mm

= 4 mm

Y = 75 MPa

Yρ

Fig. 5–43

75

γ

(a)

(MPa)

0.0016 0.008
(rad)

Solution
To solve the problem, we will first obtain the shear-strain distribution,
then establish the shear-stress distribution. Once this is known, the
applied torque can be determined.

The maximum shear strain occurs at the surface of the shaft,
Since the angle of twist is for the entire 1.5-m length of shaft,
then using Eq. 5–25 for the entire length, we have

The shear-strain distribution, which always varies linearly, is shown in
Fig. 5–43b. Note that yielding of the material occurs since

in Fig. 5–43a. The radius of the elastic core,
can be obtained by proportion. From Fig. 5–43b,

Based on the shear-strain distribution, the shear-stress distribution,
plotted over a radial line segment, is shown in Fig. 5–43c. The torque can
now be obtained using Eq. 5–26. Substituting in the numerical data yields

Ans. = 1.25 kN # m

 =
p[7511062 N>m2]

6
  [410.02 m23 - 10.004 m23]

 T =
ptY

6
 14c3 - rY3 2

 rY = 0.004 m = 4 mm

 
rY

0.0016
=

0.02 m
0.008

rY,gmax 7 gY = 0.0016 rad

gmax = 0.008 rad

0.6 =
gmax11.5 m210.02 m2f = g 

L
r

;

f = 0.6 rad
r = c.



Fig. 5–46c

Fig. 5–46b

Fig. 5–46a

(c)

Plastic torque reversed

= 104.52 MPa

52.26 MPa

r

Tp

Residual shear–stress distribution

20.52 MPa

31.74 MPa (d)

Fig. 5–46

E X A M P L E 5.21

A tube is made from a brass alloy having a length of 1.5 m and cross-
sectional area shown in Fig. 5–46a. The material has an elastic-plastic 
diagram, also shown in Fig. 5–46a. Determine the plastic torque What
are the residual-shear-stress distribution and permanent twist of the tube
that remain if is removed just after the tube becomes fully plastic? 
G � 42 GPa.

Solution

Plastic Torque. The plastic torque will strain the tube such that all
the material yields. Hence the stress distribution will appear as shown in
Fig. 5–46b. Applying Eq. 5–23, we have

�     (84 N/mm2)[(50 mm)3 � (25 mm)3] � 19.24(106) N·mm Ans.

When the tube just becomes fully plastic, yielding has started at the
inner radius, i.e., at ci � 25 mm, Fig. 5–46a. The angle of
twist that occurs can be determined from Eq. 5–25, which for the entire
tube becomes

Then is removed, or in effect reapplied in the opposite direction,
then the “fictitious” linear shear-stress distribution shown in Fig. 5–46c
must be superimposed on the one shown in Fig. 5–46b. In Fig. 5–46c, the
maximum shear stress or the modulus of rupture is computed from the
torsion formula

Also, at the inner wall of the tube the shear stress is

From Fig. 5–46a, G � �Y/
Y � 84 N/mm2/(0.002 rad) � 42(103) MPa, so
that the corresponding angle of twist upon removal of is therefore

The resulting residual-shear-stress distribution is therefore shown in
Fig. 5–46d. The permanent rotation of the tube after is removed is

Ans.d+ f = 0.120 - 0.0747 = 0.0453 rad g

Tp

fœ
p =
Tp L

JG
=

1175.9 kip # in.215 ft2112 in.>ft21p>22[12 in.24 - 11 in.24]6000 kip>in2 = 0.0747 rad b

Tpfœ
p

ti = 114.93 ksi2a1 in.
2 in.
b = 7.47 ksi

tr =
Tp co

J
=
1175.9 kip # in.212 in.21p>22[12 in.24 - 11 in.24] = 14.93 ksi

Tp

fp = gY 
L
ci

=
10.002215 ft2112 in.>ft211 in.2 = 0.120 rad g

gY = 0.002 rad,

 Tp = 2p�
co

ci

tYr
2 dr =

2p
3

 tY1co3 - ci32

Tp

Tp

Tp.
t–g

(b)

Plastic torque applied

84 MPa

T p

84

γ

(a)

(MPa)

0.002

T

i = 25 mm

o = 50 mmc

c

(rad) 2�
—–
3 

(0.002)(1.5 m)(103 mm/m)
———————————–

(25 mm)
� 0.120 rad l

19.24(106) N·mm (50 mm)
————————————
(�/2)[(50 mm)4 � (25 mm)4]

� 104.52 N/mm2 � 104.52 MPa

�i � (104.52 MPa)( (25 mm
———–
50 mm

� 52.26 MPa

19.24(106) N·mm (1.5 m)(103 mm/m)
——————————————––———–
(�/2)[(50 mm)4 � (25 mm)4]42(103) N/mm2 � 0.0747 rad i


