4-15. The assembly consists of three titanium rods and a rigid bar AC. The cross-sectional area of each rod is given in the figure. If a vertical force P = 20 kN is applied to the ring F, determine the vertical displacement of point F. $E_{\text{ti}} = 350 \text{ GPa}$.

Prob. 4-15

4-46. The beam is pinned at A and supported by two aluminum rods, each having a diameter of 25 mm and a modulus of elasticity $E_{\rm al} = 70(10^3)$ MPa. If the beam is assumed to be rigid and initially horizontal, determine the displacement of the end B when the force of 25 kN is applied.

Probs. 4-46/47

4-75. A thermo gate consists of a 6061-T6-aluminum plate AB and an Am-1004-T61-magnesium plate CD, each having a width of 15 mm and fixed supported at their ends. If the gap between them is 1.5 mm when the temperature is $T_1 = 25^{\circ}\text{C}$, determine the temperature required to just close the gap. Also, what is the axial force in each plate if the temperature becomes $T_2 = 100^{\circ}\text{C}$? Assume bending or buckling will not occur. $E_{\text{al}} = 68.9 \text{ GPa}$, $E_{\text{am}} = 44.7 \text{ GPa}$, $E_{\text{al}} = 24(10^{-6})^{\circ}\text{C}$.

*4-76. The C83400-red-brass rod AB and 2014-T6-aluminum rod BC are joined at the collar B and fixed connected at their ends. If there is no load in the members when $T_1 = 10^{\circ}\text{C}$, determine the average normal stress in each member when $T_2 = 50^{\circ}\text{C}$. Also, how far will the collar be displaced? The cross-sectional area of each member is 1000 mm^2 . $E_{br} = 100 \text{ GPa}$, $\alpha_{br} = 18(10^{-6})/^{\circ}\text{C}$, $E_{al} = 70 \text{ GPa}$, $\alpha_{al} = 23(10^{-6})/^{\circ}\text{C}$.

*4-84. The rod is made of A-36 steel and has a diameter of 6 mm. If the springs are compressed 12 mm. when the temperature of the rod is $T = 10^{\circ}$ C, determine the force in the rod when its temperature is $T = 75^{\circ}$ C. E = 200 GPa, $\alpha = 12(10^{-6})/^{\circ}$ C.

