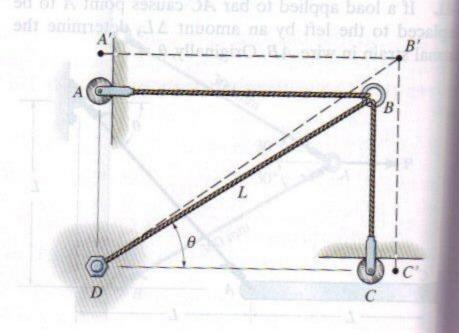

2-6. If a load applied to bar AC causes point A to be displaced to the right by an amount ΔL , determine the normal strain in wire AB. Originally, $\theta = 45^{\circ}$.

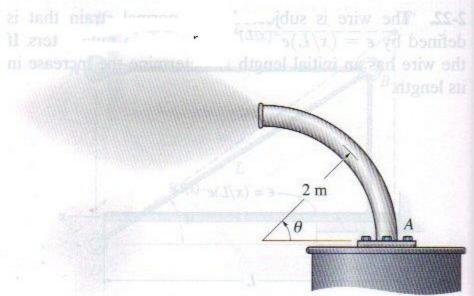

2-10. The wire AB is unstretched when $\theta = 45^{\circ}$. If a vertical load is applied to bar AC, which causes $\theta = 47^{\circ}$, determine the normal strain in the wire.

2-10/11

2-19. The three cords are attached to the ring at B. When a force is applied to the ring it moves it to point B', such that the normal strain in AB is ϵ_{AB} and the normal strain in CB is ϵ_{CB} . Provided these strains are small, determine the normal strain in DB. Note that AB and CB remains the normal and vertical, respectively, due to the rollinguides at A and C.

Ans:
$$\varepsilon_{DB} = \varepsilon_{AB} \cos^2 \theta + \varepsilon_{CB} \sin^2 \theta$$
 being a best

2-26. The piece of rubber is originally rectangular and subjected to the deformation shown by the dashed lines. Determine the average normal strain along the diagonal DB and side AD. $Ans: \varepsilon_{DB} = -6.80 \times 10^{-3} mm \ l \ mm$


 $\varepsilon_{AD} = 2.81 \times 10^{-5} mm \, lm \, m$ y $A00 \, mm$

300 mm

B

2 mm

2-31. The curved pipe has an original radius of 2 m. If it is heated nonuniformly, so that the normal strain along its length is $\epsilon = 0.05 \cos \theta$, determine the increase in length of the pipe. Ans: 0.10 m

Probs. 2-31/32

2-34. The fiber AB has a length L and orientation θ . If its ends A and B undergo very small displacements u_A and v_B , respectively, determine the normal strain in the fiber when it is in position A'B'.

Ans:
$$\varepsilon_{AB} = \frac{v_B \sin \theta}{L} - \frac{u_A \cos \theta}{L}$$